Otwarty dostęp

Effect of Micro Polypropylene Fibre on the Performance of Fly Ash-Based Geopolymer Concrete


Zacytuj

Ahmed, S.F.U., and Ronnie, Z. (2017). Ductile behavior of polyethylene fibre reinforced geopolymer composite: MATEC Web of Conferences, DOI: 10.1051/matecconf/20179701047.10.1051/matecconf/20179701047Open DOISearch in Google Scholar

Al-Tayyib, A.J., Al-Zahrani, M.M., R., and A., Al-Sulaimani, G.J. (1988). Effect of polypropylene fiber reinforcement on the properties of fresh and hardened concrete in the Arabian Gulf environment: Cement and Concrete Research, Vol. 18, No. 4, pp. 561–570.10.1016/0008-8846(88)90049-XSearch in Google Scholar

Alhozaimy, A.M., Soroushian, P., and Mirza, F. (1996). Mechanical properties of polypropylene fiber reinforced concrete and the effects of pozzolanic materials: Cement and Concrete Composites, Vol. 18, No. 2, pp. 85–92, DOI: 10.1016/0958-9465(95)00003-8.10.1016/0958-9465(95)00003-8Open DOISearch in Google Scholar

Alomayri, T., Shaikh, F.U.A., and Low, I.M. (2014). Synthesis and mechanical properties of cotton fabric reinforced geopolymer composites: Composites Part B: Engineering, Vol. 60, pp. 36–42, DOI: 10.1016/j.compositesb.2013.12.036.10.1016/j.compositesb.2013.12.036Open DOISearch in Google Scholar

Alzeer, M., and MacKenzie, K.J.D. (2012). Synthesis and mechanical properties of new fibre-reinforced composites of inorganic polymers with natural wool fibres: Journal of Materials Science, Vol. 47, No. 19, pp. 6958–6965, DOI: 10.1007/s10853-012-6644-3.10.1007/s10853-012-6644-3Open DOISearch in Google Scholar

Assaedi, H., Shaikh, F.U.A., and Low, I.M. (2016). Influence of mixing methods of nano silica on the microstructural and mechanical properties of flax fabric reinforced geopolymer composites: Construction and Building Materials, DOI: 10.1016/j.conbuildmat.2016.07.049.10.1016/j.conbuildmat.2016.07.049Open DOISearch in Google Scholar

ASTM C 1585 (2013). Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-: ASTM International, pp. 4–9, DOI: 10.1520/C1585-13.2.10.1520/C1585-13.2Open DOISearch in Google Scholar

ASTM C 469 (2014). ASTM C469/C469M-14: Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression: Annual Book of ASTM Standards, DOI: 10.1520/C0469.10.1520/0469Open DOISearch in Google Scholar

ASTM C293-02 (2002). Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Center-Point Loading): Annual Book of ASTM Standards, pp. 1–3, DOI: 10.1520/D1635.10.1520/D1635Search in Google Scholar

Aulia, T.B. (2002). “Effects of polypropylene fibers on the properties of high-strength concretes.” Institutes for Massivbau and Baustoffechnologi, University Leipzig, Lacer,, p. 7.Search in Google Scholar

Bagherzadeh, R., Pakravan, H.R., Sadeghi, A., Latifi, M., and Merati, A.A. (2012). An Investigation on Adding Polypropylene Fibers to Reinforce Lightweight Cement Composites (LWC): Journal of Engineered Fibers and Fabrics, Vol. 7, No. 4, pp. 13–21.10.1177/155892501200700410Search in Google Scholar

Banthia, N., and Gupta, R. (2006). Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete: Cement and Concrete Research, Vol. 36, pp. 1263–1267, DOI: 10.1016/j.cemconres.2006.01.010.10.1016/j.cemconres.2006.01.010Open DOISearch in Google Scholar

Bernal, S., De Gutierrez, R., Delvasto, S., and Rodriguez, E. (2010). Performance of an alkali-activated slag concrete reinforced with steel fibers: Construction and Building Materials, Vol. 24, No. 2, pp. 208–214, DOI: 10.1016/j.conbuildmat.2007.10.027.10.1016/j.conbuildmat.2007.10.027Open DOISearch in Google Scholar

BRE (2000). Constructing the future: Design Build. Davidovits, J. (2005). Geopolymers: Journal of Thermal Analysis, DOI: 10.1007/bf01912193.10.1007/bf01912193Open DOISearch in Google Scholar

Davidovits, J. (1991). Geopolymers - Inorganic polymeric new materials: Journal of Thermal Analysis, Vol. 37, No. 8, pp. 1633–1656, DOI: 10.1007/BF01912193.10.1007/BF01912193Open DOISearch in Google Scholar

Davidovits, J. (1994). Properties of Geopolymer Cements: First International Conference on Alkaline Cements and Concretes, pp. 131–149.Search in Google Scholar

Dias, D.P., and Thaumaturgo, C. (2005). Fracture toughness of geopolymeric concretes reinforced with basalt fibers: Cement and Concrete Composites, Vol. 27, No. 1, pp. 49–54, DOI: 10.1016/j.cemconcomp.2004.02.044.10.1016/j.cemconcomp.2004.02.044Open DOISearch in Google Scholar

Fanella, D.A., and Naaman, A.E. (1985). Stress-strain Properties of Fiber Reinforced Mortar in Compression: ACI Journal, Vol. 82, No. 4, pp. 475–483, DOI: 10.14359/10359.10.14359/10359Search in Google Scholar

Fernández-Jiménez, A.M., Palomo, A., and López-Hombrados, C. (2006). Engineering properties of alkali-activated fly ash concrete: ACI Materials Journal, Vol. 103, No. 2, pp. 106–112, DOI: 10.1111/j.1745-4530.2008.00353.x.10.1111/j.1745-4530.2008.00353.xOpen DOISearch in Google Scholar

Gao, X., Yu, Q.L., Yu, R., and Brouwers, H.J.H. (2017). Evaluation of hybrid steel fiber reinforcement in high performance geopolymer composites: Materials and Structures/Materiaux et Constructions, DOI: 10.1617/s11527-017-1030-x.10.1617/s11527-017-1030-xOpen DOISearch in Google Scholar

Gong Yi, Sben Rongxi, L.Q. Application of Durafiber to Civil Architectural Engineering: Beijing: Machine Press, pp. 54–66.Search in Google Scholar

Hardjito, D., Cheak, C.C., Ho, C., and Ing, L. (2008). Strength and Setting Times of Low Calcium Fly Ash-based Geopolymer Mortar: No. 1990, pp. 3–11.10.5539/mas.v2n4p3Search in Google Scholar

Hardjito, D., and Rangan, B. V (2005). Development and Properties of Low Calcium Fly Ash based Geopolymer Concrete: Research Report GC 1 Faculty of Engineering Curtin University of Technology Perth, Australia.Search in Google Scholar

He, P., Jia, D., Lin, T., Wang, M., and Zhou, Y. (2010). Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites: Ceramics International, Vol. 36, No. 4, pp. 1447–1453, DOI: 10.1016/j.ceramint.2010.02.012.10.1016/j.ceramint.2010.02.012Open DOISearch in Google Scholar

Heard, W.F., Basu, P.K., Slawson, T., and Nordendale, N.A. (2011). “Characterization and performance optimization of a cementitious composite for quasi-static and dynamic loads.” Procedia Engineering.10.1016/j.proeng.2011.04.500Search in Google Scholar

Hua Yuan, Liu Ronghua, Z.Y. (1998). Experimental Study on High Performance Concrete Reinforced with Fiber: China Concrete and Cement Products, Vol. 3, pp. 40–43.Search in Google Scholar

Hughes B.P., and Fattuhi., N.I. (1976). The Steel Fibre-Reinforced Concrete: Magazine of Concrete Research, Vol. 28, No. 96, pp. 157–161.10.1680/macr.1976.28.96.157Search in Google Scholar

IS: 516 (1959). Method of test for strength of concrete: Bureau of Indian Standards, New Delhi.Search in Google Scholar

IS: 5816 (1999). Splitting Tensile Strength of Concrete Method of Test: Bureau of Indian Standard, New Delhi.Search in Google Scholar

IS 10262:2009 (Ed.) Indian standards recommended Guidelines for concrete mix design, 2009th Ed., Bureau of Indian Standards.Search in Google Scholar

IS 3812: Part 1 (2003). Pulverized Fuel Ash-Specification: Bureau of Indian Standards.Search in Google Scholar

IS 383 (2016). Specification for Coarse and fine aggregates from natural sources for concrete. (IS 383:1970, Ed.): Bureau of Indian Standards.Search in Google Scholar

Juenger, M.C.G., Winnefeld, F., Provis, J.L., and Ideker, J.H. (2011). Advances in alternative cementitious binders: Cement and Concrete Research, DOI: 10.1016/j.cemconres.2010.11.012.10.1016/j.cemconres.2010.11.012Open DOISearch in Google Scholar

Kalifa, P., Chéné, G., and Gallé, C. (2001). High-temperature behaviour of HPC with polypropylene fibres - From spalling to microstructure: Cement and Concrete Research, Vol. 31, pp. 1487–1499, DOI: 10.1016/S0008-8846(01)00596-8.10.1016/S0008-8846(01)00596-8Open DOISearch in Google Scholar

Komonen, J., and Penttala, V. (2003). Effects of high temperature on the pore structure and strength of plain and polypropylene fiber reinforced cement pastes: Fire Technology, DOI: 10.1023/A:1021723126005.10.1023/A:1021723126005Open DOISearch in Google Scholar

Kuenzel, C., Vandeperre, L.J., Donatello, S., Boccaccini, A.R., and Cheeseman, C. (2012). Ambient temperature drying shrinkage and cracking in metakaolin-based geopolymers: Journal of the American Ceramic Society, Vol. 95, No. 10, pp. 3270–3277, DOI: 10.1111/j.1551-2916.2012.05380.x.10.1111/j.1551-2916.2012.05380.xSearch in Google Scholar

Li Guangwei, Y.Y. (2001). Experimental Study on Properties of Polypropylene Fiber Reinforced Concret: Advances in China Water Conservancy and Hydropower , ,( ): 14-16, Vol. 21, No. 5, pp. 14–16.Search in Google Scholar

Li, Z., Zhang, Y., Zhou, X., Behzad Nematollahi, Noushini, A., Hastings, M., Castel, A., Aslani, F., Olivia, M., Nikraz, H., López-Buendía, A.M., Romero-Sánchez, M.D., Climent, V., Guillem, C., Perera, D.S., et al. (2016). A Study of Utilization Aspect of Polypropylene Fibre for Making Value Added Concrete: Construction and Building Materials, Vol. 2, No. 2, pp. 103–106, DOI: 10.15373/22778179/feb2013/37.10.15373/22778179/FEB2013/37Search in Google Scholar

Litvin, A. (1985). Properties of concrete containing polypropylene fibers. Report to Wire Reinforce Institute.: López-Buendía, A.M., Romero-Sánchez, M.D., Climent, V., and Guillem, C. (2013). Surface treated polypropylene (PP) fibres for reinforced concrete: Cement and Concrete Research, DOI: 10.1016/j.cemconres.2013.08.004.10.1016/j.cemconres.2013.08.004Open DOISearch in Google Scholar

Malhotra, V.M., Carette, G.G., and Bilodeau, A. (1994). Mechanical Properties and Durability of Polypropylene Fibre Reinforced High volume Fly Ash Concrete for Shotcrete Application: ACI Materials Journal, Vol. 91, No. 5, pp. 478–486.10.14359/4070Search in Google Scholar

Natali, A., Manzi, S., and Bignozzi, M.C. (2011). “Novel fiber-reinforced composite materials based on sustainable geopolymer matrix.” Procedia Engineering,, p. 1124–1131.10.1016/j.proeng.2011.11.2120Search in Google Scholar

Nematollahi, B., Sanjayan, J., Qiu, J., and Yang, E.H. (2017). High ductile behavior of a polyethylene fiber-reinforced one-part geopolymer composite: A micromechanics-based investigation: Archives of Civil and Mechanical Engineering, DOI: 10.1016/j.acme.2016.12.005.10.1016/j.acme.2016.12.005Open DOISearch in Google Scholar

Nematollahi, B., Sanjayan, J., and Shaikh, F.U.A. (2015). Synthesis of heat and ambient cured one-part geopolymer mixes with different grades of sodium silicate: Ceramics International, Vol. 41, No. 4, pp. 5696–5704, DOI: 10.1016/j.ceramint.2014.12.154.10.1016/j.ceramint.2014.12.154Open DOISearch in Google Scholar

Olivia, M., and Nikraz, H. (2012). Properties of fly ash geopolymer concrete designed by Taguchi method: Materials and Design, Vol. 36, No. January 2011, pp. 191–198, DOI: 10.1016/j.matdes.2011.10.036.10.1016/j.matdes.2011.10.036Open DOISearch in Google Scholar

Parviz Soroushian and Jer-Wen Hsu, A.K. (1992). Mechanical Properties of Concrete Materials Reinforced with Polypropylene or Polyethylene Fibers: ACI Materials Journal, Vol. 89, No. 6, DOI: 10.14359/4018.10.14359/4018Search in Google Scholar

Perera, D.S., Uchida, O., Vance, E.R., and Finnie, K.S. (2007). Influence of curing schedule on the integrity of geopolymers: Journal of Materials Science, Vol. 42, No. 9, pp. 3099–3106, DOI: 10.1007/s10853-006-0533-6.10.1007/s10853-006-0533-6Open DOISearch in Google Scholar

Puertas, F., Amat, T., Fernández-Jiménez, A., and Vázquez, T. (2003). Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres: Cement and Concrete Research, Vol. 33, No. 12, pp. 2031–2036, DOI: 10.1016/S0008-8846(03)00222-9.10.1016/S0008-8846(03)00222-9Open DOISearch in Google Scholar

Rai, B., Roy, L.B., and Rajjak, M. (2018). A statistical investigation of different parameters influencing compressive strength of fly ash induced geopolymer concrete: Structural Concrete, DOI: 10.1002/suco.201700193.10.1002/suco.201700193Open DOISearch in Google Scholar

Ranjbar, N., Mehrali, M., Behnia, A., Javadi Pordsari, A., Mehrali, M., Alengaram, U.J., and Jumaat, M.Z. (2016a). A Comprehensive Study of the Polypropylene Fiber Reinforced Fly Ash Based Geopolymer: PloS one, Vol. 11, No. 1, p. e0147546, DOI: 10.1371/journal.pone.0147546.10.1371/journal.pone.0147546472656726807825Search in Google Scholar

Ranjbar, N., Mehrali, M., Mehrali, M., Alengaram, U.J., and Jumaat, M.Z. (2015). Graphene nanoplatelet-fly ash based geopolymer composites: Cement and Concrete Research, Vol. 76, pp. 222–231, DOI: 10.1016/j.cemconres.2015.06.003.10.1016/j.cemconres.2015.06.003Open DOISearch in Google Scholar

Ranjbar, N., Mehrali, M., Mehrali, M., Alengaram, U.J., and Jumaat, M.Z. (2016b). High tensile strength fly ash based geopolymer composite using copper coated micro steel fiber: Construction and Building Materials, DOI: 10.1016/j.conbuildmat.2016.02.228.10.1016/j.conbuildmat.2016.02.228Open DOISearch in Google Scholar

Ranjbar, N., Talebian, S., Mehrali, M., Kuenzel, C., Cornelis Metselaar, H.S., and Jumaat, M.Z. (2016c). Mechanisms of interfacial bond in steel and polypropylene fiber reinforced geopolymer composites: Composites Science and Technology, Vol. 122, pp. 73–81, DOI: 10.1016/j.compscitech.2015.11.009.10.1016/j.compscitech.2015.11.009Open DOISearch in Google Scholar

Reed, M., Lokuge, W., and Karunasena, W. (2014). Fibre-reinforced geopolymer concrete with ambient curing for in situ applications: Journal of Materials Science, Vol. 49, No. 12, pp. 4297–4304, DOI: 10.1007/s10853-014-8125-3.10.1007/s10853-014-8125-3Open DOISearch in Google Scholar

Richardson, A.E. (2006). Compressive strength of concrete with polypropylene fibre additions: Structural Survey, Vol. 24, No. 2, pp. 138–153, DOI: 10.1108/02630800610666673.10.1108/02630800610666673Open DOISearch in Google Scholar

Ridtirud, C., Chindaprasirt, P., and Pimraksa, K. (2011). Factors affecting the shrinkage of fly ash geopolymers: International Journal of Minerals, Metallurgy and Materials, Vol. 18, No. 1, pp. 100–104, DOI: 10.1007/s12613-011-0407-z.10.1007/s12613-011-0407-zOpen DOISearch in Google Scholar

Shaikh, F.U.A. (2013a). Deflection hardening behaviour of short fibre reinforced fly ash based geopolymer composites: Materials and Design, Vol. 50, pp. 674–682, DOI: 10.1016/j.matdes.2013.03.063.10.1016/j.matdes.2013.03.063Open DOISearch in Google Scholar

Shaikh, F.U.A. (2013b). Review of mechanical properties of short fibre reinforced geopolymer composites: Construction and Building Materials, Vol. 43, pp. 37–49, DOI: 10.1016/j.conbuildmat.2013.01.026.10.1016/j.conbuildmat.2013.01.026Open DOISearch in Google Scholar

Sofi, M., van Deventer, J.S.J., Mendis, P.A., and Lukey, G.C. (2007). Engineering properties of inorganic polymer concretes (IPCs): Cement and Concrete Research, Vol. 37, No. 2, pp. 251–257, DOI: 10.1016/j.cemconres.2006.10.008.10.1016/j.cemconres.2006.10.008Open DOISearch in Google Scholar

Song, P.S., and Hwang, S. (2004). Mechanical properties of high-strength steel fiber-reinforced concrete: Construction and Building Materials, Vol. 18, No. 9, pp. 669–673, DOI: 10.1016/j.conbuildmat.2004.04.027.10.1016/j.conbuildmat.2004.04.027Open DOISearch in Google Scholar

Tomkins, B.W. (2011). Chemical Resistance of Geopolymer Concrete Against H2SO4 and NaOH, p. 110.Search in Google Scholar

Urbanova, M., Andertova, J., Brus, J., Vorel, J., Koloušek, D., and Hulinsky, V. (2007). Preparation, structure and hydrothermal stability of alternative (sodium silicate-free) geopolymers: Journal of Materials Science, Vol. 42, No. 22, pp. 9267–9275, DOI: 10.1007/s10853-007-1910-5.10.1007/s10853-007-1910-5Open DOISearch in Google Scholar

Wallah, S.E., and Rangan, B. V (2006). Low-Cakcium Fly Ash Based.Search in Google Scholar

Yost, J.R., Radlińska, A., Ernst, S., and Salera, M. (2013). Structural behavior of alkali activated fly ash concrete. Part. Mixture design, material properties and sample fabrication: Materials and Structures/Materiaux et Constructions, DOI: 10.1617/s11527-012-9919-x.10.1617/s11527-012-9919-xOpen DOISearch in Google Scholar

Yunsheng, Z., Wei, S., Zongjin, L., Xiangming, Z., Eddie, and Chungkong, C. (2008). Impact properties of geopolymer based extrudates incorporated with fly ash and PVA short fiber: Construction and Building Materials, Vol. 22, No. 3, pp. 370–383, DOI: 10.1016/j.conbuildmat.2006.08.006.10.1016/j.conbuildmat.2006.08.006Open DOISearch in Google Scholar

Zhang, Z., Yao, X., Zhu, H., Hua, S., and Chen, Y. (2009). Preparation and mechanical properties of polypropylene fiber reinforced calcined kaolin-fly ash based geopolymer: Journal of Central South University of Technology, Vol. 16, pp. 49–52, DOI: 10.1007/s11771-009-0008-4.10.1007/s11771-009-0008-4Open DOISearch in Google Scholar

Zollo, R.F. Collated fibrillated polypropylene fibers in FRC, in G.C. Hoff (ed.) Fiber Reinforced Concrete: American Concrete Institute, Farmington Hills, MI, Vol. SP-81, pp. 397–409.Search in Google Scholar

Zuhua, Z., Xiao, Y., Huajun, Z., and Yue, C. (2009). Role of water in the synthesis of calcined kaolin-based geopolymer: Applied Clay Science, Vol. 43, No. 2, pp. 218–223, DOI: 10.1016/j.clay.2008.09.003.10.1016/j.clay.2008.09.003Open DOISearch in Google Scholar

eISSN:
2284-7197
ISSN:
2247-3769
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other, Electrical Engineering, Energy Engineering, Geosciences, Geodesy