Otwarty dostęp

Epidemiological Characterization of Clostridium Difficile Infections in a Rural Community Setting


Zacytuj

1. Kochan TJ, Shoshiev MS, Hastie Jessica L, Somers Madeline J, et al. Germinant Synergy Facilitates Clostridium difficile Spore Germination under Physiological Conditions. Host-Microbe Biology, msphere.asm.org, September/October 2018; Volume 3, Issue 5 e00335-18.10.1128/mSphere.00335-18612614430185513Search in Google Scholar

2. Setlow P, Wang S, Li YQ. Germination of spores of the orders Bacillales and Clostridiales. Annual Review of Microbiology, 2017; 71:459–477.10.1146/annurev-micro-090816-09355828697670Search in Google Scholar

3. Moir A. How do spores germinate? Journal Applied Microbiology, 2006; 101:526–530.Search in Google Scholar

4. Poutanen SM, Simor AE. Clostridium difficile-associated diarrhea in adults. Canadian Medical Association Journal, 2004, 171:51–58.10.1503/cmaj.103118943768615238498Search in Google Scholar

5. Kochan TJ, Foley MH, Shoshiev MS, Somers MJ, Carlson PE, Jr, Hanna PC. Updates to Clostridium difficile spore germination. Journal Bacteriology, 2018; 200:e00218-18.10.1128/JB.00218-18606034929760211Search in Google Scholar

6. Francis MB, Allen CA, Shrestha R, Sorg JA. Bile acid recognition by the Clostridium difficile germinant receptor, CspC, is important for establishing infection. PLoS Pathog 9, 2013; e1003356.10.1371/journal.ppat.1003356364996423675301Search in Google Scholar

7. Francis MB, Allen CA, Sorg JA. Spore cortex hydrolysis precedes dipicolinic acid release during Clostridium difficile spore germination. Journal Bacteriology, 2015; 197:2276–2283.10.1128/JB.02575-14452418625917906Search in Google Scholar

8. Francis MB, Sorg JA. Dipicolinic acid release by germinating Clostridium difficile spores occurs through a mechanosensing mechanism. mSphere 1, 2016; e00306-16.10.1128/mSphere.00306-16515667227981237Search in Google Scholar

9. Shrestha R, Lockless SW, Sorg JA. A Clostridium difficile alanine racemase affects spore germination and accommodates serine as a substrate. Journal Biological Chemistry, 2017; 292:10735–10742.10.1074/jbc.M117.791749548157728487371Search in Google Scholar

10. Kochan TJ, Somers MJ, Kaiser AM, Shoshiev MS, Hagan AK. et. al. Intestinal calcium and bile salts facilitate germination of Clostridium difficile spores. PLoS Pathog, 2017; 13:e1006443.2870453810.1371/journal.ppat.1006443550937028704538Search in Google Scholar

11. Brown A. W.W, Wilson R.B. Clostridium difficile colitis and zoonotic origins - a narrative review. Gastroente-rology Report, 2018,6 (3), 157–166.10.1093/gastro/goy016610152130151199Search in Google Scholar

12. Gupta A, Khanna S. Community-acquired Clostridium difficile infection: an increasing public health threat. Infection and Drug Resistance, 2014;7:63–72.Search in Google Scholar

13. De Pestel DD, Aronoff DM. Epidemiology of Clostridium difficile infection. Journal Pharmacy Practice, 2013; 26:464–75.10.1177/0897190013499521412863524064435Search in Google Scholar

14. Deshpande A, Pasupuleti V, Thota P et al. Community-associated Clostridium difficile infection and antibiotics: a metaanalysis. Journal of Antimicrobial Chemotherapy, 2013; 68:1951–61.10.1093/jac/dkt12923620467Search in Google Scholar

15. Mezoff EA, Cohen MB. Acid suppression and the risk of Clostridium difficile infection. Journal of Pediatrics, 2013; 163:627–30.10.1016/j.jpeds.2013.04.047375511423759424Search in Google Scholar

eISSN:
1220-5818
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Clinical Medicine, Internal Medicine, other, Cardiology, Gastroenterology, Pneumology