Zacytuj

Fletcher CD. The evolving classification of soft tissue tumours - an update based on the new 2013 WHO classification. Histopathology. 2014;64(1):2-11.FletcherCDThe evolving classification of soft tissue tumours - an update based on the new 2013 WHO classificationHistopathology201464121110.1111/his.12267Search in Google Scholar

Gatta G, van der Zwan JM, Casali PG, Siesling S, Dei Tos AP, Kunkler I, et al. Rare cancers are not so rare: the rare cancer burden in Europe. Eur J Cancer. 2011;47(17):2493-511.GattaGvan derZwan JMCasaliPGSieslingSDeiTos APKunklerIRare cancers are not so rare: the rare cancer burden in EuropeEur J Cancer20114717249351110.1016/j.ejca.2011.08.008Search in Google Scholar

Gustafson P. Soft tissue sarcoma. Epidemiology and prognosis in 508 patients. Acta Orthop Scand Suppl. 1994;259:1-31.GustafsonPSoft tissue sarcomaEpidemiology and prognosis in 508 patients. Acta Orthop Scand Suppl199425913110.3109/17453679409153928Search in Google Scholar

Gronchi A, Lo Vullo S, Colombo C, Collini P, Stacchiotti S, Mariani L, et al. Extremity soft tissue sarcoma in a series of patients treated at a single institution: local control directly impacts survival. Ann Surg. 2010;251(3):506-11.GronchiALoVullo SColomboCColliniPStacchiottiSMarianiLExtremity soft tissue sarcoma in a series of patients treated at a single institution: local control directly impacts survivalAnn Surg201025135061110.1097/SLA.0b013e3181cf87faSearch in Google Scholar

Sleijfer S, Ray-Coquard I, Papai Z, Le Cesne A, Scurr M, Schoffski P, et al. Pazopanib, a multikinase angiogenesis inhibitor, in patients with relapsed or refractory advanced soft tissue sarcoma: a phase II study from the European organisation for research and treatment of cancer-soft tissue and bone sarcoma group (EORTC study 62043). J Clin Oncol. 2009;27(19):3126-32.SleijferSRay-CoquardIPapaiZLe CesneAScurrMSchoffskiPPazopanib, a multikinase angiogenesis inhibitor, in patients with relapsed or refractory advanced soft tissue sarcoma: a phase II study from the European organisation for research and treatment of cancer-soft tissue and bone sarcoma group (EORTC study 62043)J Clin Oncol2009271931263210.1200/JCO.2008.21.3223Search in Google Scholar

Ratan R, Patel SR. Chemotherapy for soft tissue sarcoma. Cancer. 2016.RatanRPatelSRChemotherapy for soft tissue sarcomaCancer201610.1002/cncr.30191Search in Google Scholar

Gordon EM, Sankhala KK, Chawla N, Chawla SP. Trabectedin for Soft Tissue Sarcoma: Current Status and Future Perspectives. Adv Ther. 2016;33(7):1055-71.GordonEMSankhalaKKChawlaNChawlaSPTrabectedin for Soft Tissue Sarcoma: Current Status and Future PerspectivesAdv Ther201633710557110.1007/s12325-016-0344-3Search in Google Scholar

Schoffski P, Chawla S, Maki RG, Italiano A, Gelderblom H, Choy E, et al. Eribulin versus dacarbazine in previously treated patients with advanced liposarcoma or leiomyosarcoma: a randomised, open-label, multicentre, phase 3 trial. Lancet. 2016;387(10028):1629-37.SchoffskiPChawlaSMakiRGItalianoAGelderblomHChoyEEribulin versus dacarbazine in previously treated patients with advanced liposarcoma or leiomyosarcoma: a randomised, open-label, multicentre, phase 3 trialLancet20163871002816293710.1016/S0140-6736(15)01283-0Search in Google Scholar

Tap WD, Jones RL, Van Tine BA, Chmielowski B, Elias AD, Adkins D, et al. Olaratumab and doxorubicin versus doxorubicin alone for treatment of soft-tissue sarcoma: an open-label phase 1b and randomised phase 2 trial. Lancet. 2016;388(10043):488-97.TapWDJonesRLVanTine BAChmielowskiBEliasADAdkinsDOlaratumab and doxorubicin versus doxorubicin alone for treatment of soft-tissue sarcoma: an open-label phase 1b and randomised phase 2 trialLancet2016388100434889710.1016/S0140-6736(16)30587-6Search in Google Scholar

Casali PG, Abecassis N, Bauer S, Biagini R, Bielack S, Bonvalot S, et al. Soft tissue and visceral sarcomas: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29(Supplement_4):iv51-iv67.CasaliPGAbecassisNBauerSBiaginiRBielackSBonvalotSSoft tissue and visceral sarcomas: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-upAnn Oncol201829Supplement_4iv51iv6710.1093/annonc/mdy09629846498Search in Google Scholar

von Mehren M, Randall RL, Benjamin RS, Boles S, Bui MM, Ganjoo KN, et al. Soft Tissue Sarcoma, Version 2.2018, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2018;16(5):536-63.vonMehren MRandallRLBenjaminRSBolesSBuiMMGanjooKNSoft Tissue Sarcoma, Version 2.2018, NCCN Clinical Practice Guidelines in OncologyJ Natl Compr Canc Netw20181655366310.6004/jnccn.2018.0025Search in Google Scholar

Varelas X. The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development. 2014;141(8):1614-26.VarelasXThe Hippo pathway effectors TAZ and YAP in development, homeostasis and diseaseDevelopment2014141816142610.1242/dev.102376Search in Google Scholar

Zhang K, Qi HX, Hu ZM, Chang YN, Shi ZM, Han XH, et al. YAP and TAZ Take Center Stage in Cancer. Biochemistry. 2015;54(43):6555-66.ZhangKQiHXHuZMChangYNShiZMHanXHYAP and TAZ Take Center Stage in CancerBiochemistry2015544365556610.1021/acs.biochem.5b01014Search in Google Scholar

Mo JS, Park HW, Guan KL. The Hippo signaling pathway in stem cell biology and cancer. EMBO Rep. 2014;15(6):642-56.MoJSParkHWGuanKLThe Hippo signaling pathway in stem cell biology and cancerEMBO Rep20141566425610.15252/embr.201438638Search in Google Scholar

Ehmer U, Sage J. Control of Proliferation and Cancer Growth by the Hippo Signaling Pathway. Mol Cancer Res. 2016;14(2):127-40.EhmerUSageJControl of Proliferation and Cancer Growth by the Hippo Signaling PathwayMol Cancer Res20161421274010.1158/1541-7786.MCR-15-0305Search in Google Scholar

Stein C, Bardet AF, Roma G, Bergling S, Clay I, Ruchti A, et al. YAP1 Exerts Its Transcriptional Control via TEAD-Mediated Activation of Enhancers. PLoS Genet. 2015;11(8):e1005465.SteinCBardetAFRomaGBerglingSClayIRuchtiAYAP1 Exerts Its Transcriptional Control via TEAD-Mediated Activation of EnhancersPLoS Genet2015118e100546510.1371/journal.pgen.1005465Search in Google Scholar

Yu FX, Zhao B, Panupinthu N, Jewell JL, Lian I, Wang LH, et al. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell. 2012;150(4):780-91.YuFXZhaoBPanupinthuNJewellJLLianIWangLHRegulation of the Hippo-YAP pathway by G-protein-coupled receptor signalingCell201215047809110.1016/j.cell.2012.06.037Search in Google Scholar

Avruch J, Praskova M, Ortiz-Vega S, Liu M, Zhang XF. Nore1 and RASSF1 regulation of cell proliferation and of the MST1/2 kinases. Methods Enzymol. 2006;407:290-310.AvruchJPraskovaMOrtiz-VegaSLiuMZhangXFNore1 and RASSF1 regulation of cell proliferation and of the MST1/2 kinasesMethods Enzymol200640729031010.1016/S0076-6879(05)07025-4Search in Google Scholar

Yu J, Zheng Y, Dong J, Klusza S, Deng WM, Pan D. Kibra functions as a tumor suppressor protein that regulates Hippo signaling in conjunction with Merlin and Expanded. Dev Cell. 2010;18(2):288-99.YuJZhengYDongJKluszaSDengWMPanDKibra functions as a tumor suppressor protein that regulates Hippo signaling in conjunction with Merlin and ExpandedDev Cell20101822889910.1016/j.devcel.2009.12.012285856220159598Search in Google Scholar

Kim S, Jho EH. Merlin, a regulator of Hippo signaling, regulates Wnt/beta-catenin signaling. BMB Rep. 2016;49(7):357-8.KimSJhoEHMerlin, a regulator of Hippo signaling, regulates Wnt/beta-catenin signalingBMB Rep2016497357810.5483/BMBRep.2016.49.7.104Search in Google Scholar

Halder G, Dupont S, Piccolo S. Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat Rev Mol Cell Biol. 2012;13(9):591-600.HalderGDupontSPiccoloSTransduction of mechanical and cytoskeletal cues by YAP and TAZNat Rev Mol Cell Biol201213959160010.1038/nrm341622895435Search in Google Scholar

Rauskolb C, Sun S, Sun G, Pan Y, Irvine KD. Cytoskeletal tension inhibits Hippo signaling through an Ajuba-Warts complex. Cell. 2014;158(1):143-56.RauskolbCSunSSunGPanYIrvineKDCytoskeletal tension inhibits Hippo signaling through an Ajuba-Warts complexCell201415811435610.1016/j.cell.2014.05.035408280224995985Search in Google Scholar

Piersma B, Bank RA, Boersema M. Signaling in Fibrosis: TGF-beta, WNT, and YAP/TAZ Converge. Front Med (Lausanne). 2015;2:59.PiersmaBBankRABoersemaMSignaling in Fibrosis: TGF-beta, WNT, and YAP/TAZ ConvergeFront Med (Lausanne)201525910.3389/fmed.2015.00059455852926389119Search in Google Scholar

Zanconato F, Forcato M, Battilana G, Azzolin L, Quaranta E, Bodega B, et al. Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat Cell Biol. 2015;17(9):1218-27.ZanconatoFForcatoMBattilanaGAzzolinLQuarantaEBodegaBGenome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growthNat Cell Biol201517912182710.1038/ncb3216618641726258633Search in Google Scholar

Lin L, Bivona TG. The Hippo effector YAP regulates the response of cancer cells to MAPK pathway inhibitors. Molecular & Cellular Oncology. 2016;3(1):e1021441.LinLBivonaTGThe Hippo effector YAP regulates the response of cancer cells to MAPK pathway inhibitorsMolecular & Cellular Oncology201631e102144110.1080/23723556.2015.1021441484517127308535Search in Google Scholar

Fan R, Kim N-G, Gumbiner BM. Regulation of Hippo pathway by mitogenic growth factors via phosphoinositide 3-kinase and phosphoinositide-dependent kinase-1. Proceedings of the National Academy of Sciences. 2013;110(7):2569-74.FanRKimN-GGumbinerBMRegulation of Hippo pathway by mitogenic growth factors via phosphoinositide 3-kinase and phosphoinositide-dependent kinase-1Proceedings of the National Academy of Sciences2013110725697410.1073/pnas.1216462110357494323359693Search in Google Scholar

Liu X, Li H, Rajurkar M, Li Q, Cotton JL, Ou J, et al. Tead and AP1 Coordinate Transcription and Motility. Cell Rep. 2016;14(5):1169-80.LiuXLiHRajurkarMLiQCottonJLOuJTead and AP1 Coordinate Transcription and MotilityCell Rep201614511698010.1016/j.celrep.2015.12.104474944226832411Search in Google Scholar

Sun G, Irvine KD. Ajuba family proteins link JNK to Hippo signaling. Sci Signal. 2013;6(292):ra81.SunGIrvineKDAjuba family proteins link JNK to Hippo signalingSci Signal20136292ra8110.1126/scisignal.2004324383054624023255Search in Google Scholar

Huang W, Lv X, Liu C, Zha Z, Zhang H, Jiang Y, et al. The N-terminal phosphodegron targets TAZ/WWTR1 protein for SCFbeta-TrCP-dependent degradation in response to phosphatidylinositol 3-kinase inhibition. J Biol Chem. 2012;287(31):26245-53.HuangWLvXLiuCZhaZZhangHJiangYThe N-terminal phosphodegron targets TAZ/WWTR1 protein for SCFbeta-TrCP-dependent degradation in response to phosphatidylinositol 3-kinase inhibitionJ Biol Chem201228731262455310.1074/jbc.M112.382036340670922692215Search in Google Scholar

Miyanaga A, Masuda M, Tsuta K, Kawasaki K, Nakamura Y, Sakuma T, et al. Hippo Pathway Gene Mutations in Malignant Mesothelioma: Revealed by RNA and Targeted Exon Sequencing. Journal of Thoracic Oncology.10(5):844-51.MiyanagaAMasudaMTsutaKKawasakiKNakamuraYSakumaTHippo Pathway Gene Mutations in Malignant Mesothelioma: Revealed by RNA and Targeted Exon SequencingJournal of Thoracic Oncology1058445110.1097/JTO.000000000000049325902174Search in Google Scholar

Bueno R, Stawiski EW, Goldstein LD, Durinck S, De Rienzo A, Modrusan Z, et al. Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat Genet. 2016;48(4):407-16.BuenoRStawiskiEWGoldsteinLDDurinckSDe RienzoAModrusanZComprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterationsNat Genet20164844071610.1038/ng.352026928227Search in Google Scholar

Mizuno T, Murakami H, Fujii M, Ishiguro F, Tanaka I, Kondo Y, et al. YAP induces malignant mesothelioma cell proliferation by upregulating transcription of cell cycle-promoting genes. Oncogene. 2012;31(49):5117-22.MizunoTMurakamiHFujiiMIshiguroFTanakaIKondoYYAP induces malignant mesothelioma cell proliferation by upregulating transcription of cell cycle-promoting genesOncogene2012314951172210.1038/onc.2012.522286761Search in Google Scholar

Hayashi H, Higashi T, Yokoyama N, Kaida T, Sakamoto K, Fukushima Y, et al. An Imbalance in TAZ and YAP Expression in Hepatocellular Carcinoma Confers Cancer Stem Cell-like Behaviors Contributing to Disease Progression. Cancer Res. 2015;75(22):4985-97.HayashiHHigashiTYokoyamaNKaidaTSakamotoKFukushimaYAn Imbalance in TAZ and YAP Expression in Hepatocellular Carcinoma Confers Cancer Stem Cell-like Behaviors Contributing to Disease ProgressionCancer Res2015752249859710.1158/0008-5472.CAN-15-029126420216Search in Google Scholar

Kang W, Cheng AS, Yu J, To KF. Emerging role of Hippo pathway in gastric and other gastrointestinal cancers. World J Gastroenterol. 2016;22(3):1279-88.KangWChengASYuJToKFEmerging role of Hippo pathway in gastric and other gastrointestinal cancersWorld J Gastroenterol201622312798810.3748/wjg.v22.i3.1279471603726811664Search in Google Scholar

Hiemer SE, Zhang L, Kartha VK, Packer TS, Almershed M, Noonan V, et al. A YAP/TAZ-Regulated Molecular Signature Is Associated with Oral Squamous Cell Carcinoma. Mol Cancer Res. 2015;13(6):957-68.HiemerSEZhangLKarthaVKPackerTSAlmershedMNoonanVA YAP/TAZ-Regulated Molecular Signature Is Associated with Oral Squamous Cell CarcinomaMol Cancer Res20151369576810.1158/1541-7786.MCR-14-0580447085725794680Search in Google Scholar

Maugeri-Sacca M, Barba M, Pizzuti L, Vici P, Di Lauro L, Dattilo R, et al. The Hippo transducers TAZ and YAP in breast cancer: oncogenic activities and clinical implications. Expert Rev Mol Med. 2015;17:e14.Maugeri-SaccaMBarbaMPizzutiLViciPDiLauro LDattiloRThe Hippo transducers TAZ and YAP in breast cancer: oncogenic activities and clinical implicationsExpert Rev Mol Med201517e1410.1017/erm.2015.1226136233Search in Google Scholar

Yang Z, Zhang M, Xu K, Liu L, Hou WK, Cai YZ, et al. Knockdown of YAP1 inhibits the proliferation of osteosarcoma cells in vitro and in vivo. Oncol Rep. 2014;32(3):1265-72.YangZZhangMXuKLiuLHouWKCaiYZKnockdown of YAP1 inhibits the proliferation of osteosarcoma cells in vitro and in vivoOncol Rep201432312657210.3892/or.2014.330524993351Search in Google Scholar

Giovannini M, Robanus-Maandag E, van der Valk M, Niwa-Kawakita M, Abramowski V, Goutebroze L, et al. Conditional biallelic Nf2 mutation in the mouse promotes manifestations of human neurofibromatosis type 2. Genes Dev. 2000;14(13):1617-30.GiovanniniMRobanus-MaandagEvan derValk MNiwa-KawakitaMAbramowskiVGoutebrozeLConditional biallelic Nf2 mutation in the mouse promotes manifestations of human neurofibromatosis type 2Genes Dev2000141316173010.1101/gad.14.13.1617Search in Google Scholar

Nishio M, Hamada K, Kawahara K, Sasaki M, Noguchi F, Chiba S, et al. Cancer susceptibility and embryonic lethality in Mob1a/1b double-mutant mice. J Clin Invest. 2012;122(12):4505-18.NishioMHamadaKKawaharaKSasakiMNoguchiFChibaSCancer susceptibility and embryonic lethality in Mob1a/1b double-mutant miceJ Clin Invest20121221245051810.1172/JCI63735353354223143302Search in Google Scholar

Crose LE, Galindo KA, Kephart JG, Chen C, Fitamant J, Bardeesy N, et al. Alveolar rhabdomyosarcoma-associated PAX3-FOXO1 promotes tumorigenesis via Hippo pathway suppression. J Clin Invest. 2014;124(1):285-96.CroseLEGalindoKAKephartJGChenCFitamantJBardeesyNAlveolar rhabdomyosarcoma-associated PAX3-FOXO1 promotes tumorigenesis via Hippo pathway suppressionJ Clin Invest201412412859610.1172/JCI67087387122024334454Search in Google Scholar

Tanas MR, Ma S, Jadaan FO, Ng CK, Weigelt B, Reis-Filho JS, et al. Mechanism of action of a WWTR1(TAZ)-CAMTA1 fusion oncoprotein. Oncogene. 2016;35(7):929-38.TanasMRMaSJadaanFONgCKWeigeltBReis-FilhoJSMechanism of action of a WWTR1(TAZ)-CAMTA1 fusion oncoproteinOncogene20163579293810.1038/onc.2015.148498345925961935Search in Google Scholar

Antonescu CR, Le Loarer F, Mosquera JM, Sboner A, Zhang L, Chen CL, et al. Novel YAP1-TFE3 fusion defines a distinct subset of epithelioid hemangioendothelioma. Genes Chromosomes Cancer. 2013;52(8):775-84.AntonescuCRLe LoarerFMosqueraJMSbonerAZhangLChenCLNovel YAP1-TFE3 fusion defines a distinct subset of epithelioid hemangioendotheliomaGenes Chromosomes Cancer20135287758410.1002/gcc.22073408999423737213Search in Google Scholar

O’Meara E, Stack D, Lee CH, Garvin AJ, Morris T, Argani P, et al. Characterization of the chromosomal translocation t(10;17)(q22;p13) in clear cell sarcoma of kidney. J Pathol. 2012;227(1):72-80.O’MearaEStackDLeeCHGarvinAJMorrisTArganiPCharacterization of the chromosomal translocation t(10;17)(q22;p13) in clear cell sarcoma of kidneyJ Pathol20122271728010.1002/path.398522294382Search in Google Scholar

Lee CH, Ou WB, Marino-Enriquez A, Zhu M, Mayeda M, Wang Y, et al. 14-3-3 fusion oncogenes in high-grade endometrial stromal sarcoma. Proc Natl Acad Sci U S A. 2012;109(3):929-34.LeeCHOuWBMarino-EnriquezAZhuMMayedaMWangY14-3-3 fusion oncogenes in high-grade endometrial stromal sarcomaProc Natl Acad Sci U S A201210939293410.1073/pnas.1115528109327191322223660Search in Google Scholar

Mohamed AD, Tremblay AM, Murray GI, Wackerhage H. The Hippo signal transduction pathway in soft tissue sarcomas. Biochim Biophys Acta. 2015;1856(1):121-9.MohamedADTremblayAMMurrayGIWackerhageHThe Hippo signal transduction pathway in soft tissue sarcomasBiochim Biophys Acta201518561121910.1016/j.bbcan.2015.05.00626050962Search in Google Scholar

Deel MD, Li JJ, Crose LE, Linardic CM. A Review: Molecular Aberrations within Hippo Signaling in Bone and Soft-Tissue Sarcomas. Front Oncol. 2015;5:190.DeelMDLiJJCroseLELinardicCMA Review: Molecular Aberrations within Hippo Signaling in Bone and Soft-Tissue SarcomasFront Oncol2015519010.3389/fonc.2015.00190455710626389076Search in Google Scholar

Eisinger-Mathason TS, Mucaj V, Biju KM, Nakazawa MS, Gohil M, Cash TP, et al. Deregulation of the Hippo pathway in soft-tissue sarcoma promotes FOXM1 expression and tumorigenesis. Proc Natl Acad Sci U S A. 2015;112(26):E3402-11.Eisinger-MathasonTSMucajVBijuKMNakazawaMSGohilMCashTPDeregulation of the Hippo pathway in soft-tissue sarcoma promotes FOXM1 expression and tumorigenesisProc Natl Acad Sci U S A201511226E34021110.1073/pnas.1420005112449177526080399Search in Google Scholar

Gharanei S, Brini AT, Vaiyapuri S, Alholle A, Dallol A, Arrigoni E, et al. RASSF2 methylation is a strong prognostic marker in younger age patients with Ewing sarcoma. Epigenetics. 2013;8(9):893-8.GharaneiSBriniATVaiyapuriSAlholleADallolAArrigoniERASSF2 methylation is a strong prognostic marker in younger age patients with Ewing sarcomaEpigenetics201389893810.4161/epi.25617388376623887284Search in Google Scholar

Avigad S, Shukla S, Naumov I, Cohen IJ, Ash S, Meller I, et al. Aberrant methylation and reduced expression of RASSF1A in Ewing sarcoma. Pediatr Blood Cancer. 2009;53(6):1023-8.AvigadSShuklaSNaumovICohenIJAshSMellerIAberrant methylation and reduced expression of RASSF1A in Ewing sarcomaPediatr Blood Cancer20095361023810.1002/pbc.2211519637319Search in Google Scholar

Richter AM, Walesch SK, Wurl P, Taubert H, Dammann RH. The tumor suppressor RASSF10 is upregulated upon contact inhibition and frequently epigenetically silenced in cancer. Oncogenesis. 2012;1:e18.RichterAMWaleschSKWurlPTaubertHDammannRHThe tumor suppressor RASSF10 is upregulated upon contact inhibition and frequently epigenetically silenced in cancerOncogenesis20121e1810.1038/oncsis.2012.18341264423552700Search in Google Scholar

Slemmons KK, Crose LE, Rudzinski E, Bentley RC, Linardic CM. Role of the YAP Oncoprotein in Priming Ras-Driven Rhabdomyosarcoma. PLoS One. 2015;10(10):e0140781.SlemmonsKKCroseLERudzinskiEBentleyRCLinardicCMRole of the YAP Oncoprotein in Priming Ras-Driven RhabdomyosarcomaPLoS One20151010e014078110.1371/journal.pone.0140781461985926496700Search in Google Scholar

Mohamed A, Sun C, De Mello V, Selfe J, Missiaglia E, Shipley J, et al. The Hippo effector TAZ (WWTR1) transforms myoblasts and TAZ abundance is associated with reduced survival in embryonal rhabdomyosarcoma. J Pathol. 2016;240(1):3-14.MohamedASunCDe MelloVSelfeJMissiagliaEShipleyJThe Hippo effector TAZ (WWTR1) transforms myoblasts and TAZ abundance is associated with reduced survival in embryonal rhabdomyosarcomaJ Pathol2016240131410.1002/path.4745499573127184927Search in Google Scholar

Hsu JH, Lawlor ER. BMI-1 suppresses contact inhibition and stabilizes YAP in Ewing sarcoma. Oncogene. 2011;30(17):2077-85.HsuJHLawlorERBMI-1 suppresses contact inhibition and stabilizes YAP in Ewing sarcomaOncogene2011301720778510.1038/onc.2010.571327606521170084Search in Google Scholar

Ahmed AA, Abedalthagafi M, Anwar AE, Bui MM. Akt and Hippo Pathways in Ewing’s Sarcoma Tumors and Their Prognostic Significance. J Cancer. 2015;6(10):1005-10.AhmedAAAbedalthagafiMAnwarAEBuiMM. AktHippoPathwaysin Ewing’s Sarcoma Tumors and Their Prognostic SignificanceJ Cancer201561010051010.7150/jca.12703456585026366214Search in Google Scholar

Bouvier C, Macagno N, Nguyen Q, Loundou A, Jiguet-Jiglaire C, Gentet JC, et al. Prognostic value of the Hippo pathway transcriptional coactivators YAP/TAZ and beta1-integrin in conventional osteosarcoma. Oncotarget. 2016;7(40):64702-10.BouvierCMacagnoNNguyenQLoundouAJiguet-JiglaireCGentetJCPrognostic value of the Hippo pathway transcriptional coactivators YAP/TAZ and beta1-integrin in conventional osteosarcomaOncotarget2016740647021010.18632/oncotarget.11876532310927608849Search in Google Scholar

Chai J, Xu S, Guo F. TEAD1 mediates the oncogenic activities of Hippo-YAP1 signaling in osteosarcoma. Biochem Biophys Res Commun. 2017;488(2):297-302.ChaiJXuSGuoFTEAD1 mediates the oncogenic activities of Hippo-YAP1 signaling in osteosarcomaBiochem Biophys Res Commun2017488229730210.1016/j.bbrc.2017.05.03228483529Search in Google Scholar

Ma J, Huang K, Ma Y, Zhou M, Fan S. The TAZ-miR-224-SMAD4 axis promotes tumorigenesis in osteosarcoma. Cell Death Dis. 2017;8(1):e2539.MaJHuangKMaYZhouMFanSThe TAZ-miR-224-SMAD4 axis promotes tumorigenesis in osteosarcomaCell Death Dis201781e253910.1038/cddis.2016.468538637528055015Search in Google Scholar

Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C, et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell. 2011;147(4):759-72.CordenonsiMZanconatoFAzzolinLForcatoMRosatoAFrassonCThe Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cellsCell201114747597210.1016/j.cell.2011.09.04822078877Search in Google Scholar

Kim MH, Kim J, Hong H, Lee SH, Lee JK, Jung E, et al. Actin remodeling confers BRAF inhibitor resistance to melanoma cells through YAP/TAZ activation. EMBO J. 2016;35(5):462-78.KimMHKimJHongHLeeSHLeeJKJungEActin remodeling confers BRAF inhibitor resistance to melanoma cells through YAP/TAZ activationEMBO J20163554627810.1158/1535-7163.TARG-15-B50Search in Google Scholar

Lin L, Sabnis AJ, Chan E, Olivas V, Cade L, Pazarentzos E, et al. The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies. Nat Genet. 2015;47(3):250-6.LinLSabnisAJChanEOlivasVCadeLPazarentzosEThe Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapiesNat Genet2015473250610.1038/ng.3218493024425665005Search in Google Scholar

Lai D, Ho KC, Hao Y, Yang X. Taxol resistance in breast cancer cells is mediated by the hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF. Cancer Res. 2011;71(7):2728-38.LaiDHoKCHaoYYangXTaxol resistance in breast cancer cells is mediated by the hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGFCancer Res201171727283810.1158/0008-5472.CAN-10-271121349946Search in Google Scholar

Park HW, Guan KL. Regulation of the Hippo pathway and implications for anticancer drug development. Trends Pharmacol Sci. 2013;34(10):581-9.ParkHWGuanKLRegulation of the Hippo pathway and implications for anticancer drug developmentTrends Pharmacol Sci20133410581910.1016/j.tips.2013.08.006392910724051213Search in Google Scholar

Ye S, Eisinger-Mathason TS. Targeting the Hippo pathway: Clinical implications and therapeutics. Pharmacol Res. 2016;103:270-8.YeSEisinger-MathasonTSTargeting the Hippo pathway: Clinical implications and therapeuticsPharmacol Res2016103270810.1016/j.phrs.2015.11.02526678601Search in Google Scholar

Bhat UG, Halasi M, Gartel AL. FoxM1 is a general target for proteasome inhibitors. PLoS One. 2009;4(8):e6593.BhatUGHalasiMGartelALFoxM1 is a general target for proteasome inhibitorsPLoS One200948e659310.1371/journal.pone.0006593272165819672316Search in Google Scholar

Huggett MT, Jermyn M, Gillams A, Illing R, Mosse S, Novelli M, et al. Phase I/II study of verteporfin photodynamic therapy in locally advanced pancreatic cancer. Br J Cancer. 2014;110(7):1698-704.HuggettMTJermynMGillamsAIllingRMosseSNovelliMPhase I/II study of verteporfin photodynamic therapy in locally advanced pancreatic cancerBr J Cancer20141107169870410.1038/bjc.2014.95397409824569464Search in Google Scholar

Chan KK, Oza AM, Siu LL. The statins as anticancer agents. Clin Cancer Res. 2003;9(1):10-9.ChanKKOzaAMSiuLLThe statins as anticancer agentsClin Cancer Res200391109Search in Google Scholar

Fenske TS, Shah NM, Kim KM, Saha S, Zhang C, Baim AE, et al. A phase 2 study of weekly temsirolimus and bortezomib for relapsed or refractory B-cell non-Hodgkin lymphoma: A Wisconsin Oncology Network study. Cancer. 2015;121(19):3465-71.FenskeTSShahNMKimKMSahaSZhangCBaimAEA phase 2 study of weekly temsirolimus and bortezomib for relapsed or refractory B-cell non-Hodgkin lymphoma: A Wisconsin Oncology Network studyCancer20151211934657110.1002/cncr.2950226079295Search in Google Scholar

Wang DY, Wu YN, Huang JQ, Wang W, Xu M, Jia JP, et al. Hippo/YAP signaling pathway is involved in osteosarcoma chemoresistance. Chin J Cancer. 2016;35:47.WangDYWuYNHuangJQWangWXuMJiaJPHippo/YAP signaling pathway is involved in osteosarcoma chemoresistanceChin J Cancer2016354710.1186/s40880-016-0109-z487572327206784Search in Google Scholar

eISSN:
1792-362X
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Clinical Medicine, Internal Medicine, Haematology, Oncology