Otwarty dostęp

The effect of soil on spatial variation of the herbaceous layer modulated by overstorey in an Eastern European poplar-willow forest


Zacytuj

Aiba, M., Takafumi, H. & Hiura T. (2012). Interspecific differences in determinants of plant species distribution and the relationships with functional traits. J. Ecol., 100. 950−957. DOI: 10.1111/j.1365-2745.2012.01959.x.10.1111/j.1365-2745.2012.01959.xOpen DOISearch in Google Scholar

Aitchison, J. (1986). The statistical analysis of compositional data. London: Chapman and Hall.10.1007/978-94-009-4109-0Search in Google Scholar

Aitchison, J. & Greenacre M. (2002). Biplots of Compositional Data. Journal of the Royal Statistical Society: Series C (Applied Statistics), 51, 375–392. DOI: 10.1111/1467-9876.00275.10.1111/1467-9876.00275Open DOISearch in Google Scholar

Andivia, E., Fernández, M., Alejano, R. & Vázquez-Piqué J. (2015). Tree patch distribution drives spatial heterogeneity of soil traits in cork oak woodlands. Ann. For. Sci., 72, 549–559. DOI: 10.1007/s13595-015-0475-8.10.1007/s13595-015-0475-8Open DOISearch in Google Scholar

Angers, D.A. & Caron J. (1998). Plant-induced Changes in Soil Structure: Processes and Feedbacks. Biogeochemistry, 42(1–2), 55–72. DOI: 10.1023/A:1005944025343.10.1023/A:1005944025343Open DOISearch in Google Scholar

Baddeley, A. & Turner R. (2005). Spatstat: an R package for analyzing spatial point patterns. Journal of Statistical Software, 12, 1–42. DOI: 10.18637/jss.v012.i06.10.18637/jss.v012.i06Search in Google Scholar

Barthes, B. & Roose E. (2002). Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels. Catena, 47(2), 133–149. DOI: 10.1016/S0341-8162(01)00180-1.10.1016/S0341-8162(01)00180-1Open DOISearch in Google Scholar

Binkley, D. & Giardina C. (1998). Why do tree species affect soils? The warp and woof of tree-soil interactions. Biogeochemistry, 42(1–2), 89–106. DOI: 10.1023/A:1005948126251.10.1023/A:1005948126251Open DOISearch in Google Scholar

Blanchet, F.G., Legendre, P. & Borcard D. (2008). Forward selection of explanatory variables. Ecology, 89(9), 2623–2632. DOI: 10.1890/07-0986.1.10.1890/07-0986.118831183Open DOISearch in Google Scholar

Blank, L. & Carmel Y. (2012). Woody vegetation patch type determines herbaceous species richness and composition in Mediterranean ecosystem. Community Ecol., 13, 72–81. DOI: 10.1556/ComEc.13.2012.1.9.10.1556/ComEc.13.2012.1.9Open DOISearch in Google Scholar

Boogaart van der, K.G., Tolosana-Delgado, R. & Bren M. (2018). Compositions: Compositional Data Analysis. R package version 1.40-2. https://CRAN.Rproject.org/package=compositionsSearch in Google Scholar

Borcard, D. & Legendre P. (2002). All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol. Model., 153, 51–68. DOI: 10.1016/S0304-3800(01)00501-4.10.1016/S0304-3800(01)00501-4Open DOISearch in Google Scholar

Bratton, S. (1976). Resource division in an understory herb community: responses to temporal and microtopographic gradients. Am. Nat., 110(974), 679–693. www.jstor.org/stable/2459584.10.1086/283097Search in Google Scholar

Breshears, D., Rich, P., Barnes, F. & Campbell K. (1997). Overstorey-imposed heterogeneity in solar radiation and soil moisture in a semiarid woodland. Ecol. Appl., 7(4), 1201–1215. DOI: 10.2307/2641208.10.2307/2641208Open DOISearch in Google Scholar

Buzuk, G.N. (2017). Phytoindication with ecological scales and regression analysis: environmental index. Bulletin of Pharmacy, 2 (76), 31–37.Search in Google Scholar

Canton, Y., Sole-Benet, A., Asensio, C., Chamizo, S. & Puigdefabregas J. (2009). Aggregate stability in range sandy loam soils Relationships with runoff and erosion. Catena, 77, 192–199. DOI: 10.1016/j.catena.2008.12.011.10.1016/j.catena.2008.12.011Open DOISearch in Google Scholar

Chang, L.-W., Zelený, D., Li, C.-F., Chiu, S.-T. & Hsieh C.-F. (2013). Better environmental data may reverse conclusions about niche-and dispersal-based processes in community assembly. Ecology, 94, 2145–2151. DOI: 10.1890/12-2053.1.10.1890/12-2053.124358699Open DOISearch in Google Scholar

Chase, J.M. (2014). Spatial scale resolves the niche versus neutral theory debate. J. Veg. Sci., 25, 319–322. DOI: 10.1111/jvs.12159.10.1111/jvs.12159Open DOISearch in Google Scholar

Chudomelová, M., Zelený, D. & Li Ch.-F. (2017). Contrasting patterns of fine-scale herb layer species composition in temperate forests. Acta Oecol., 80, 24–31. DOI: 10.1016/j.actao.2017.02.003.10.1016/j.actao.2017.02.003Open DOISearch in Google Scholar

Cottenie, K. (2005). Integrating environmental and spatial processes in ecological community dynamics. Ecol. Lett., 8, 1175–1182. DOI: 10.1111/j.1461-0248.2005.00820.x.10.1111/j.1461-0248.2005.00820.x21352441Search in Google Scholar

Dallas, T. & Drake J.M. (2014). Relative importance of environmental, geographic, and spatial variables on zooplankton metacommunities. Ecosphere, 5(9), 104. DOI: 10.1890/ES14-00071.1.10.1890/ES14-00071.1Open DOISearch in Google Scholar

De la Cruz, M. (2008). Metodos para analizar datos puntuales. In F.T. Maestre, A. Escudero & A. Bonet (Eds.), Introduccion al Analisis Espacial de Datos en Ecologia y Ciencias Ambientales: Metodos y Aplicaciones (pp. 76−127). Madrid: Asociacion Espanola de Ecologia Terrestre, Universidad Rey Juan Carlos y Caja de Ahorros del Mediterraneo.Search in Google Scholar

Didukh, Ya.P. (2011). The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Kyiv: Phytosociocentre.Search in Google Scholar

Dixon, P.M. (2002). Nearest-neighbor contingency table analysis of spatial segregation for several species. Ecoscience, 9(2), 142–151. https://www.jstor.org/stable/4290147810.1080/11956860.2002.11682700Search in Google Scholar

Dray, S., Bauman, D., Blanchet, G., Borcard, D., Clappe, S., Guenard, G., Jombart, T., Larocque, G., Legendre, P., Madi, N. & Wagner H.H. (2018). adespatial: Multivariate multiscale spatial analysis. R package version 0.3-2. https://CRAN.R-project.org/package=adespatial.Search in Google Scholar

Egozcue, J.J., Pawlowsky–Glahn, V., Mateu–Figueras, G. & Barcel’o–Vidal C. (2003). Isometric logratio transformations for compositional data analysis. Mathematical Geology, 35(3), 279–300. DOI: 10.1023/A:1023818214614.10.1023/A:1023818214614Open DOISearch in Google Scholar

Elliott, K.J., Vose, J.M., Knoepp, L.D., Clinton, B.D. & Kloeppel B.D. (2015). Functional role of the herbaceous layer in eastern deciduous forest ecosystems. Ecosystems, 18(2), 221–236. DOI: 10.1007/s10021-014-9825-x.10.1007/s10021-014-9825-xOpen DOISearch in Google Scholar

Fekete, I., Varga, C., Biró, B., Tóth, J.A., Várbíró, G., Lajtha, K., Szabó, S. & Kotroczó Z. (2016). The effects of litter production and litter depth on soil microclimate in a Central European deciduous forest. Plant Soil, 398 (1–2), 291–300. DOI: 10.1007/s11104-015-2664-5.10.1007/s11104-015-2664-5Open DOISearch in Google Scholar

Fortin, M.-J. & Dale M. (2005). Spatial analysis: Guide for ecologists. Cambridge: Cambridge University Press. Frelich, L.E., Machado, J.L. & Reich P.B. (2003). Fine scale environmental variation and structure of understorey plant communities in two old growth pine forests. J. Ecol., 91, 283–293. DOI: 10.1046/j.1365-2745.2003.00765.x.10.1046/j.1365-2745.2003.00765.xOpen DOISearch in Google Scholar

Gazol, A. & Ibanez R. (2010). Plant species composition in a temperate forest: Multi-scale patterns and determinants. Acta Oecol., 36, 634–644. DOI: 10.1016/j.actao.2010.09.009.10.1016/j.actao.2010.09.009Open DOISearch in Google Scholar

Gilbert, B. & Lechowicz M.J. (2004). Neutrality, niches, and dispersal in a temperate forest understory. Proc. Nat. Acad. Sci. USA, 101(20), 7651–7656. DOI: 10.1073/pnas.0400814101.10.1073/pnas.040081410141966115128948Open DOISearch in Google Scholar

Gilliam, F.S., Turrill, N.L. & Adams M.B. (1995). Herbaceous-layer and overstorey species in clear-cut and mature central Appalachian hardwood forests. Ecol. Appl., 5, 947–955. DOI: 10.2307/2269345.10.2307/2269345Open DOISearch in Google Scholar

Gilliam, F.S. (2007). The ecological significance of the herbaceous layer in temperate forest ecosystems. Bioscience, 57, 845–858. DOI: 10.1641/B571007.10.1641/571007Open DOISearch in Google Scholar

Griffith, D.A. (1992). What is spatial autocorrelation? Reflections on the past 25 years of spatial statistics. L’Espace Géographique, 21, 265–280.10.3406/spgeo.1992.3091Search in Google Scholar

Hurlbert, S.H. (1984). Pseudoreplication and the design of ecological field experiments. Ecol. Monogr., 54(2), 187–211. DOI: 10.2307/1942661.10.2307/1942661Open DOISearch in Google Scholar

Jones, C.G., Lawton, J.H. & Shachak M. (1994). Organisms as ecosystem engineers. Oikos, 69, 373–386. DOI: 10.2307/3545850.10.2307/3545850Open DOISearch in Google Scholar

Jones, M.M., Tuomisto, H., Clark, D.B. & Olivas P. (2006). Effects of mesoscale environmental heterogeneity and dispersal limitation on floristic variation in rainforest ferns. J. Ecol., 94, 181–195. DOI: 10.1111/j.1365-2745.2005.01071.x.10.1111/j.1365-2745.2005.01071.xOpen DOISearch in Google Scholar

Jones, M.M., Tuomisto, H., Borcard, D., Legendre, P., Clark, D.B. & Olivas P.C. (2008). Explaining variation in tropical plant community composition: influence of environmental and spatial data quality. Oecologia, 155, 593–604. DOI: 10.1007/s00442-007-0923-8.10.1007/s00442-007-0923-8Open DOISearch in Google Scholar

Karst, J., Gilbert, B. & Lechowicz M.J. (2005). Fern community assembly: the roles of chance and the environment at local and intermediate scales. Ecology, 86, 2473–2486. DOI: 10.1890/04-1420.10.1890/04-1420Open DOISearch in Google Scholar

King, A.W. & With K.A. (2002). Dispersal success on spatially structured landscapes: when do spatial pattern and dispersal behavior really matter? Ecol. Model., 147(1), 23−39. DOI: 10.1016/S0304-3800(01)00400-8.10.1016/S0304-3800(01)00400-8Open DOISearch in Google Scholar

Laliberte, A.S., Rango, A., Herrick, J.E., Fredrickson, E.L. & Burkett L. (2009). An object–based image analysis approach for determining fractional cover of senescent and green vegetation with digital plot photography. J. Arid Environ., 69, 1–14. DOI: 10.1016/j.jaridenv.2006.08.016.10.1016/j.jaridenv.2006.08.016Open DOISearch in Google Scholar

Legendre, P. & Fortin M.J. (1989). Spatial pattern and ecological analysis. Vegetatio, 80(2), 107–138. DOI: 10.1007/BF00048036.10.1007/BF00048036Open DOISearch in Google Scholar

Legendre, P. (1993). Spatial autocorrelation: trouble or new paradigm? Ecology, 74, 1659–1673. DOI: 10.2307/1939924.10.2307/1939924Open DOISearch in Google Scholar

Legendre, P. & Gallagher E.D. (2001). Ecologically meaningful transformations for ordination of species. Oecologia, 129(2), 271–280. DOI: 10.1007/s004420100716.10.1007/s00442010071628547606Open DOISearch in Google Scholar

Legendre, P., Mi, X., Ren, H., Ma, K., Yu, M., Sun, I.–F. & He F. (2009). Partitioning beta diversity in a subtropical broadleaved forest of China. Ecology, 90, 663–674. DOI: 10.1890/07-1880.1.10.1890/07-1880.119341137Open DOISearch in Google Scholar

Legendre, P. & Legendre L. (2012.) Numerical ecology. Amsterdam: Elsevier Science.Search in Google Scholar

Legendre, P. & Gauthier O. (2014). Statistical methods for temporal and space-time analysis of community composition data. Proc. R. Soc. B, 281(1778), 20132728. DOI: 10.1098/rspb.2013.2728.10.1098/rspb.2013.2728390693724430848Search in Google Scholar

Lennon, J.J. (2000). Red-shifts and red herrings in geographical ecology. Ecography, 23, 101−113. DOI: 10.1111/j.1600-0587.2000.tb00265.x.10.1111/j.1600-0587.2000.tb00265.xOpen DOISearch in Google Scholar

Levin, D.A. & Wilson A.C. (1976). Rates of evolution in seed plants: Net increase in diversity of chromosome numbers and species numbers through time. Proc. Nat. Acad. Sci., 73(6), 2086–2090. DOI: 10.1073/pnas.73.6.2086.10.1073/pnas.73.6.208643045416592327Open DOISearch in Google Scholar

Lososová, Z., Šmarda, P., Chytrý, M., Purschke, O., Pyšek, P., Sádlo, J., Tichý, L. & Winter M. (2015). Phylogenetic structure of plant species pools reflects habitat age on the geological time scale. J. Veg. Sci., 26, 1080–1089. DOI: 10.1111/jvs.12308.10.1111/jvs.12308Open DOISearch in Google Scholar

Lyon, J. & Sharpe W.E. (2003). Impacts of hay-scented fern on nutrition of northern red oak seedlings. J. Plant Nutr., 26(3), 487–502. DOI: 10.1081/PLN-120017661.10.1081/PLN-120017661Open DOISearch in Google Scholar

MacKinney, A.L. (1929). Effects of forest litter on soil temperature and soil freezing in autumn and winter. Ecology, 10(3), 312–321. DOI: 10.2307/1929507.10.2307/1929507Open DOISearch in Google Scholar

Mölder, A., Bernhardt-Römermann, M. & Schmidt W. (2008). Herb-layer diversity in deciduous forests: raised by tree richness or beaten by beech? For. Ecol. Manag., 256(3), 272–281. DOI: 10.1016/j.foreco.2008.04.012.10.1016/j.foreco.2008.04.012Open DOISearch in Google Scholar

Nettesheim, F.C., Garbin, M.L., Rajão, P.H.M., Araujo, D.S.D. & Grelle C.E.V. (2018). Environment is more relevant than spatial structure as a driver of regional variation in tropical tree community richness and composition. Plant Ecology & Diversity, DOI: 10.1080/17550874.2018.1473520.10.1080/17550874.2018.1473520Open DOISearch in Google Scholar

Oijen, D., Feijen, M., Hommel, P., Ouden, J. & Waal R. (2005). Effects of tree species composition on within-forest distribution of understorey species. Appl. Veg. Sci., 8(2), 155–166. DOI: 10.1111/j.1654-109X.2005.tb00641.x.10.1111/j.1654-109X.2005.tb00641.xOpen DOISearch in Google Scholar

Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H. & Wagner H. (2018). Community ecology package. R package version 2.5-2. https://CRAN.R-project.org/package=veganSearch in Google Scholar

Paluch, J.G. & Gruba P. (2012). Effect of local species composition on topsoil properties in mixed stands with silver fir (Abies alba Mill.). Forestry: An International Journal of Forest Research, 85(3), 413–426. DOI: 10.1093/forestry/cps040.10.1093//cps040Open DOISearch in Google Scholar

Parent, L., de Almeida, C., Hernandes, A., Egozcue, J.J., Gülser, C., Bolinder, M.A., Kätterer, T., Andrén, O., Parent, S.E., Anctil, F., Centurion, J.F. & Natale W. (2012). Compositional analysis for an unbiased measure of soil aggregation. Geoderma, 179–180, 123–131. DOI: 10.1016/j.geoderma.2012.02.022.10.1016/j.geoderma.2012.02.022Open DOISearch in Google Scholar

Pennisi, B.V. & van Iersel M. (2002). Three ways to measure medium EC. GMPro, 22(1), 46–48.Search in Google Scholar

Rao, C.R. (1964). The use and interpretation of principal component analysis in applied research. Sankhyā: The Indian Journal of Statistics, Series A, 26, 329–358. https://www.jstor.org/stable/25049339Search in Google Scholar

Siefert, A., Ravenscroft, C., Althoff, D., Alvarez-Y Epiz, J.C., Carter, B.E., Glennon, K.L., Heberling, J.M., Jo, I.S., Pontes, A., Sauer, A., Willis, A. & Fridley J.D. (2012). Scale dependence of vegetation-environment relationships: a meta-analysis of multivariate data. J. Veg. Sci., 23, 942–951. DOI: 10.1111/j.1654-1103.2012.01401.x.10.1111/j.1654-1103.2012.01401.xOpen DOISearch in Google Scholar

Silvertown, J., McConway, K., Gowing, D., Dodd, M., Fay, M.F., Joseph, J.A. & Dolphin K. (2006). Absence of phylogenetic signal in the niche structure of meadow plant communities. Proc. R. Soc. B, 273, 39–44. DOI: 10.1098/rspb.2005.3288.10.1098/rspb.2005.3288156000416519232Open DOISearch in Google Scholar

Smith, T.W. & Lundholm J.T. (2010). Variation partitioning as a tool to distinguish between niche and neutral processes. Ecography, 33, 648–655. DOI: 10.1111/j.1600-0587.2009.06105.x.10.1111/j.1600-0587.2009.06105.xOpen DOISearch in Google Scholar

Standovár, T., Ódor, P., Aszalós, R. & Gálhidy L. (2006). Sensitivity of ground layer vegetation diversity descriptors in indicating forest naturalness. Community Ecol., 7(2), 199–209. DOI: 10.1556/ComEc.7.2006.2.7.10.1556/ComEc.7.2006.2.7Open DOISearch in Google Scholar

Stohlgren, T.J., Owen, A.J. & Lee M. (2000). Monitoring shifts in plant diversity in response to climate change: a method for landscapes. Biodivers. Conserv., 9(1), 65–86. DOI: 10.1023/A:1008995726486.10.1023/A:1008995726486Open DOISearch in Google Scholar

Teng, S.N., Xu, C., Sandel, B. & Svenning J-C. (2018). Effects of intrinsic sources of spatial autocorrelation on spatial regression modelling. Methods in Ecology and Evolution, 9, 363–372. DOI: 10.1111/2041-210X.12866.10.1111/2041-210X.12866Open DOISearch in Google Scholar

Tobler, W. (1970). A computer movie simulating urban growth in the Detroit region. Economic Geography, 46(1), 234–240. DOI: 10.2307/143141.10.2307/143141Open DOISearch in Google Scholar

Vadunina, A.F. & Korchagin S.A. (1986). Methods for research of physical properties of the soil. Moscow: Agropromizdat.Search in Google Scholar

von Oheimb, G. & Härdtle W. (2009). Selection harvest in temperate deciduous forest: impact on herb layer richness and composition. Biodivers. Conserv., 18(2), 271–287. DOI: 10.1007/s10531-008-9475-4.10.1007/s10531-008-9475-4Open DOISearch in Google Scholar

Weiher, E., Freund, D., Bunton, T., Stefanski, A., Lee, T. & Bentivenga S. (2011). Advances, challenges and a developing synthesis of ecological community assembly theory. Philos. Trans. R. Soc. Lond. B, 366, 2403–2413. DOI: 10.1098/rstb.2011.0056.10.1098/rstb.2011.0056313042921768155Open DOISearch in Google Scholar

Westhoff, V. & van der Maarel E. (1978). The Braun-Blanquet approach. In R.H. Whittaker (Ed.), Classification of plant communities (pp. 289−399). Hague: W. Junk.Search in Google Scholar

Whigham, D.F. (2004). The ecology of woodland herbs in temperate deciduous forests. Annual Review of Ecology, Evolution, and Systematics, 35, 583–621. DOI: 10.1146/annurev.ecolsys.35.021103.105708.10.1146/annurev.ecolsys.35.021103.105708Open DOISearch in Google Scholar

Xing, Z., Yan, D., Wang, D., Liu, Sh. & Dong G. (2018). Experimental analysis of the effect of forest litter cover on surface soil water dynamics under continuous rainless condition in North China. Kuwait Journal of Science, 45(2), 75–83.Search in Google Scholar

Yoon, T. K., Noh, N. J., Han, S., Lee, J. & Son Y. (2014). Soil moisture effects on leaf litter decomposition and soil carbon dioxide efflux in wetland and upland forests. Soil Sci. Soc. Am. J., 78, 1804–1816. DOI: 10.2136/sssaj2014.03.0094.10.2136/sssaj2014.03.0094Open DOISearch in Google Scholar

Zadorozhnaya, G.A., Andrusevych, K.V. & Zhukov O.V. (2018). Soil heterogeneity after recultivation: ecological aspect. Folia Oecol., 45(1), 46–52. DOI: 10.2478/foecol-2018-0005.10.2478/foecol-2018-0005Open DOISearch in Google Scholar

Zhukov, A. & Gadorozhnaya G. (2016). Spatial heterogeneity of mechanical impedance of a typical chernozem: the ecological approach. Ekológia (Bratislava), 35, 263–278. DOI: 10.1515/eko-2016-0021.10.1515/eko-2016-0021Open DOISearch in Google Scholar

Zhukov, A.V. & Zadorozhnaya G.A. (2016). Ecomorphes of the sod-lithogenic soils on reddish-brown clays. Issues of Steppe Forestry and Forest Reclamation of Soils, 45, 91–103.Search in Google Scholar

Zhukov, O., Kunah, O., Dubinina, Y. & Novikova V. (2018). The role of edaphic and vegetation factors in structuring beta diversity of the soil macrofauna community of the Dnipro river arena terrace. Ekológia (Bratislava), 37(3), 301–327. DOI: 10.2478/eko-2018-0023.10.2478/eko-2018-0023Open DOISearch in Google Scholar

Zinke, P. (1962). The pattern of influence of individual forest trees on soil properties. Ecology, 43(1), 130–133. DOI: 10.2307/1932049.10.2307/1932049Open DOISearch in Google Scholar

eISSN:
1337-947X
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Ecology, other, Chemistry, Environmental Chemistry, Geosciences, Geography