Otwarty dostęp

Energy Efficiency Modernizations at the Industrial Plant: A Case Study


Zacytuj

[1] The official portal of the European Union. https://europa.eu/european-union/topics/energy_en [online access 24.09.2018].Search in Google Scholar

[2] Website of the European Parliament. https://www.europarl.europa.eu/factsheets/en/sheet/68/energy-policy-general-principles [online access 24.09.2018].Search in Google Scholar

[3] Baleynaud JM, Huang F, Zheng J, Baleynaud JM, Lu J. Heat recovery potentials and technologies in industrial zones. J Energy Inst. 2016;90:951-61. DOI: 10.1016/j.joei.2016.07.012.10.1016/j.joei.2016.07.012Search in Google Scholar

[4] Gielen D, Bennaceur K, Kerr T, Tam C, Tanaka K, Taylor M, et al. IEA, Tracking Industrial Energy Efficiency and CO2 Emissions. https://www.researchgate.net/publication/279804486_IEA_Tracking_Industrial_Energy_Efficiency_and_CO2_Emissions [online access 24.09.2018].Search in Google Scholar

[5] Independent Statistics & Analysis. U.S. Energy Information Administration. 2017. https://www.eia.gov/todayinenergy/detail.php?id=32912 [online access 24.09.2018]Search in Google Scholar

[6] Van de Bor D, Ferreira CI, Kiss AA. Low grade waste heat recovery using heat pumps and power cycles. Energy. 2015;89:864-73. DOI: 10.1016/j.energy.2015.06.030.10.1016/j.energy.2015.06.030Search in Google Scholar

[7] Wang T, Luan W, Wang W, Tu ST. Waste heat recovery through plate heat exchanger based thermoelectric generator system. Appl Energy. 2014;136:860-5. DOI: 10.1016/j.apenergy.2014.07.08310.1016/j.apenergy.2014.07.083Search in Google Scholar

[8] Energy Recovery Heat Pipes. 5 Advantages of using Heat Pipes for Air-To-Air Energy Recovery. http://www.dac-hvac.com/energy-recovery-heat-pipes-5-advantages-of-using-heat-pipes-for-air-to-air-energy-recovery/ [online access 24.09.2018].Search in Google Scholar

[9] Yodrak L, Rittidech S, Poomsa N, Meena P. Waste heat recovery by heat pipe air-preheater to energy thrift from the furnace in a hot forging process. Am J Appl Sci. 2010;7:675-81. DOI: 10.3844/ajassp.2010.675.681.10.3844/ajassp.2010.675.681Search in Google Scholar

[10] Shabgard H, Allen MJ, Sharifi N, Benn SP, Faghri A, Bergman TL. Heat pipe heat exchangers and heat sinks: opportunities, challenges, applications, analysis, and state of the art. Int J Heat Mass Transfer. 2015;89:138-58. DOI: 10.1016/j.ijheatmasstransfer.2015.05.020.10.1016/j.ijheatmasstransfer.2015.05.020Search in Google Scholar

[11] Thu K, Yanagi H, Saha BB, Ng KC. Performance analysis of a low-temperature waste heat-driven adsorption desalination prototype. Int J Heat Mass Transfer. 2013;65:662-9. DOI: 10.1016/j.ijheatmasstransfer.2013.06.053.10.1016/j.ijheatmasstransfer.2013.06.053Search in Google Scholar

[12] Peris B, Navarro-Esbrí J, Moles F, Mota-Babiloni A. Experimental study of an ORC (organic Rankine cycle) for low grade waste heat recovery in a ceramic industry. Energy. 2015;85:534-42. DOI: 10.1016/j.energy.2015.03.065.10.1016/j.energy.2015.03.065Search in Google Scholar

[13] Khatita MA, Tamer SA, Ashour FH, Ismail I. Power generation using waste heat recovery by organic Rankine cycle in oil and gas sector in Egypt: a case study. Energy. 2014;64:462-72. DOI: 10.1016/j.energy.2013.11.011.10.1016/j.energy.2013.11.011Search in Google Scholar

[14] Gao P, Jiang L, Wang LW, Wang RZ, Song FP. Simulation and experiments on an ORC system with different scroll expanders based on energy and exergy analysis. Appl Therm Eng. 2015;75:880-8. DOI: 10.1016/j.applthermaleng.2014.10.044.10.1016/j.applthermaleng.2014.10.044Search in Google Scholar

[15] Stijepovic MZ, Papadopoulos AI, Linke P, Grujic AS, Seferlis P. An exergy composite curves approach for the design of optimum multi-pressure organic Rankine cycle processes. Energy. 2014;69:285-98. DOI: 10.1016/j.energy.2014.03.006.10.1016/j.energy.2014.03.006Search in Google Scholar

[16] Stijepovic M, Linke P, Papadopoulos A, Grujic A. On the role of working fluid properties in Organic Rankine Cycle performance. Appl Therm Eng. 2012;36:406-13. DOI: 10.1016/j.applthermaleng.2011.10.057.10.1016/j.applthermaleng.2011.10.057Search in Google Scholar

[17] Saleh B, Koglbauer G, Wendland M, Fischer J. Working fluids for low-temperature organic Rankine cycles. Energy. 2007;32:1210-21. DOI: 10.1016/j.energy.2006.07.001.10.1016/j.energy.2006.07.001Search in Google Scholar

[18] Cabeza LF, Oró E. Thermal energy storage for renewable heating and cooling systems. Renew Heating Cooling. Technologies Applications. 2016:139-79. DOI: 10.1016/B978-1-78242-213-6.00007-210.1016/B978-1-78242-213-6.00007-2Search in Google Scholar

[19] Chowdhury Y, Chowdhury H, Barua P, Salam B. Waste Heat Thermal Storage. A Way to Renewable Energy. Int Conf Mechanical, Industrial Materials Eng. 2017 (ICMIME2017). Rajshahi University of Engineering & Technology. https://www.researchgate.net/publication/325415854_Waste_Heat_Thermal_Storage_A_Way_to_Renewable_Energy [online access 24.09.2018].Search in Google Scholar

[20] Sarbu I, Sebarchievici CA. Comprehensive review of thermal energy storage. Sustainability. 2018;10:191-223. DOI: 10.3390/su10010191.10.3390/su10010191Search in Google Scholar

[21] Ayappan S, Mayilsamy K, Sreenarayanan VV. Performance improvement studies in a solar greenhouse drier using sensible heat storage materials. Heat Mass Transfer. 2016;52:459-66. DOI: 10.1007/s00231-015-1568-5.10.1007/s00231-015-1568-5Search in Google Scholar

[22] Mascarenhas JS, Chowdhury H, Thirugnanasambandam M, Chowdhury T, Saidur R. Energy, exergy, sustainability, and emission analysis of industrial air compressors. J Cleaner Prod. 2019;231:183-95. DOI: 10.1016/j.jclepro.2019.05.158.10.1016/j.jclepro.2019.05.158Search in Google Scholar

[23] Broniszewski M, Werle S. The study on the heat recovery from air compressors. 17th Int Conf Heat Transfer Renew Sources Energy (HTRSE-2018). E3S Web of Conferences. DOI: 10.1051/e3sconf/20187003001.10.1051/e3sconf/20187003001Search in Google Scholar

[24] Raj TN, Iniyan S, Goic R. A review of renewable energy based cogeneration technologies. Renew Sust Energy Rev. 2011;15:3640-8. DOI: 10.1016/j.rser.2011.06.003.10.1016/j.rser.2011.06.003Search in Google Scholar

[25] Broniszewski M, Werle S. CO2 reduction methods and evaluation of proposed energy efficiency improvements in Poland’s large industrial plant. Energy. 2020. DOI: 10.1016/j.energy.2020.117704.10.1016/j.energy.2020.117704Search in Google Scholar

eISSN:
1898-6196
Język:
Angielski