Zacytuj

Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FK, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D’Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, García-Sáez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jäättelä M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine JC, Martin SJ, Martinou JC, Medema JP, Mehlen P, Meier P, Melino S, Miao EA, Molkentin JD, Moll UM, Muñoz-Pinedo C, Nagata S, Nuñez G, Oberst A, Oren M, Overholtzer M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pereira DM, Pervaiz S, Peter ME, Piacentini M, Pinton P, Prehn JHM, Puthalakath H, Rabinovich GA, Rehm M, Rizzuto R, Rodrigues CMP, Rubinsztein DC, Rudel T, Ryan KM, Sayan E, Scorrano L, Shao F, Shi Y, Silke J, Simon HU, Sistigu A, Stockwell BR, Strasser A, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Thorburn A, Tsujimoto Y, Turk B, Vanden Berghe T, Vandenabeele P, Vander Heiden MG, Villunger A, Virgin HW, Vousden KH, Vucic D, Wagner EF, Walczak H, Wallach D, Wang Y, Wells JA, Wood W, Yuan J, Zakeri Z, Zhivotovsky B, Zitvogel L, Melino G, Kroemer G. Molecular mechanisms of cell death: recommendations of the Nomenclature Committe on Cell Death 2018. Cell Death Differ 2018;25:486–541. doi: 10.1038/s41418-017-0012-4 Galluzzi L Vitale I Aaronson SA Abrams JM Adam D Agostinis P Alnemri ES Altucci L Amelio I Andrews DW Annicchiarico-Petruzzelli M Antonov AV Arama E Baehrecke EH Barlev NA Bazan NG Bernassola F Bertrand MJM Bianchi K Blagosklonny MV Blomgren K Borner C Boya P Brenner C Campanella M Candi E Carmona-Gutierrez D Cecconi F Chan FK Chandel NS Cheng EH Chipuk JE Cidlowski JA Ciechanover A Cohen GM Conrad M Cubillos-Ruiz JR Czabotar PE D’Angiolella V Dawson TM Dawson VL De Laurenzi V De Maria R Debatin KM DeBerardinis RJ Deshmukh M Di Daniele N Di Virgilio F Dixit VM Dixon SJ Duckett CS Dynlacht BD El-Deiry WS Elrod JW Fimia GM Fulda S García-Sáez AJ Garg AD Garrido C Gavathiotis E Golstein P Gottlieb E Green DR Greene LA Gronemeyer H Gross A Hajnoczky G Hardwick JM Harris IS Hengartner MO Hetz C Ichijo H Jäättelä M Joseph B Jost PJ Juin PP Kaiser WJ Karin M Kaufmann T Kepp O Kimchi A Kitsis RN Klionsky DJ Knight RA Kumar S Lee SW Lemasters JJ Levine B Linkermann A Lipton SA Lockshin RA López-Otín C Lowe SW Luedde T Lugli E MacFarlane M Madeo F Malewicz M Malorni W Manic G Marine JC Martin SJ Martinou JC Medema JP Mehlen P Meier P Melino S Miao EA Molkentin JD Moll UM Muñoz-Pinedo C Nagata S Nuñez G Oberst A Oren M Overholtzer M Pagano M Panaretakis T Pasparakis M Penninger JM Pereira DM Pervaiz S Peter ME Piacentini M Pinton P Prehn JHM Puthalakath H Rabinovich GA Rehm M Rizzuto R Rodrigues CMP Rubinsztein DC Rudel T Ryan KM Sayan E Scorrano L Shao F Shi Y Silke J Simon HU Sistigu A Stockwell BR Strasser A Szabadkai G Tait SWG Tang D Tavernarakis N Thorburn A Tsujimoto Y Turk B Vanden Berghe T Vandenabeele P Vander Heiden MG Villunger A Virgin HW Vousden KH Vucic D Wagner EF Walczak H Wallach D Wang Y Wells JA Wood W Yuan J Zakeri Z Zhivotovsky B Zitvogel L Melino G Kroemer G Molecular mechanisms of cell death: recommendations of the Nomenclature Committe on Cell Death 2018 Cell Death Differ 201825486 541 10.1038/s41418-017-0012-4586423929362479Open DOISearch in Google Scholar

Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D, Alnemri ES, Altucci L, Andrews D, Annicchiarico-Petruzzelli M, Baehrecke EH, Bazan NG, Bertrand MJ, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Bredesen DE, Brenner C, Campanella M, Candi E, Cecconi F, Chan FK, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, Di Daniele N, Dixit VM, Dynlacht BD, El-Deiry WS, Fimia GM, Flavell RA, Fulda S, Garrido C, Gougeon ML, Green DR, Gronemeyer H, Hajnoczky G, Hardwick JM, Hengartner MO, Ichijo H, Joseph B, Jost PJ, Kaufmann T, Kepp O, Klionsky DJ, Knight RA, Kumar S, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lugli E, Madeo F, Malorni W, Marine JC, Martin SJ, Martinou JC, Medema JP, Meier P, Melino S, Mizushima N, Moll U, Muñoz-Pinedo C, Nuñez G, Oberst A, Panaretakis T, Penninger JM, Peter ME, Piacentini M, Pinton P, Prehn JH, Puthalakath H, Rabinovich GA, Ravichandran KS, Rizzuto R, Rodrigues CM, Rubinsztein DC, Rudel T, Shi Y, Simon HU, Stockwell BR, Szabadkai G, Tait SW, Tang HL, Tavernarakis N, Tsujimoto Y, Vanden Berghe T, Vandenabeele P, Villunger A, Wagner EF, Walczak H, White E, Wood WG, Yuan J, Zakeri Z, Zhivotovsky B, Melino G, Kroemer G. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 2015;22:58–73. doi: 10.1038/cdd.2014.137 Galluzzi L Bravo-San Pedro JM Vitale I Aaronson SA Abrams JM Adam D Alnemri ES Altucci L Andrews D Annicchiarico-Petruzzelli M Baehrecke EH Bazan NG Bertrand MJ Bianchi K Blagosklonny MV Blomgren K Borner C Bredesen DE Brenner C Campanella M Candi E Cecconi F Chan FK Chandel NS Cheng EH Chipuk JE Cidlowski JA Ciechanover A Dawson TM Dawson VL De Laurenzi V De Maria R Debatin KM Di Daniele N Dixit VM Dynlacht BD El-Deiry WS Fimia GM Flavell RA Fulda S Garrido C Gougeon ML Green DR Gronemeyer H Hajnoczky G Hardwick JM Hengartner MO Ichijo H Joseph B Jost PJ Kaufmann T Kepp O Klionsky DJ Knight RA Kumar S Lemasters JJ Levine B Linkermann A Lipton SA Lockshin RA López-Otín C Lugli E Madeo F Malorni W Marine JC Martin SJ Martinou JC Medema JP Meier P Melino S Mizushima N Moll U Muñoz-Pinedo C Nuñez G Oberst A Panaretakis T Penninger JM Peter ME Piacentini M Pinton P Prehn JH Puthalakath H Rabinovich GA Ravichandran KS Rizzuto R Rodrigues CM Rubinsztein DC Rudel T Shi Y Simon HU Stockwell BR Szabadkai G Tait SW Tang HL Tavernarakis N Tsujimoto Y Vanden Berghe T Vandenabeele P Villunger A Wagner EF Walczak H White E Wood WG Yuan J Zakeri Z Zhivotovsky B Melino G Kroemer G Essential versus accessory aspects of cell death: recommendations of the NCCD 2015 Cell Death Differ 20152258 73 10.1038/cdd.2014.137426278225236395Open DOISearch in Google Scholar

Yuan J, Kroemer G. Alternative cell death mechanisms in development and beyond. Genes Dev 2010;24:2592–602. doi: 10.1101/gad.1984410 Yuan J Kroemer G Alternative cell death mechanisms in development and beyond Genes Dev 2010242592 602 10.1101/gad.1984410299403321123646Open DOISearch in Google Scholar

Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972;26:239–57. doi: 10.1038/bjc.1972.33 Kerr JF Wyllie AH Currie AR Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics Br J Cancer 197226239 57 10.1038/bjc.1972.3320086504561027Open DOISearch in Google Scholar

Fuchs Y, Steller H. Programmed cell death in animal development and disease. Cell 2011;147:742–58. doi: 10.1016/j.cell.2011.10.033 Fuchs Y Steller H Programmed cell death in animal development and disease Cell 2011147742 58 10.1016/j.cell.2011.10.033451110322078876Open DOISearch in Google Scholar

Tang D, Kang R, Vanden Berghe T, Vandenabeele P, Kroemer G. The molecular machinery of regulated cell death. Cell Res 2019;29:347–64. doi: 10.1038/s41422-019-0164-5 Tang D Kang R Vanden Berghe T Vandenabeele P Kroemer G The molecular machinery of regulated cell death Cell Res 201929347 64 10.1038/s41422-019-0164-5679684530948788Open DOISearch in Google Scholar

Dixon SJ. Ferroptosis: bug or feature? Immunol Rev 2017;277:150–7. doi: 10.1111/imr.12533 Dixon SJ Ferroptosis: bug or feature? Immunol Rev 2017277150 7 10.1111/imr.1253328462529Open DOISearch in Google Scholar

Wang S, Luo J, Zhang Z, Dong D, Shen Y, Fang Y, Hu L, Liu M, Dai C, Peng S, Fang Z, Shang P. Iron and magnetic: new research direction of the ferroptosis-based cancer therapy. Am J Cancer Res 2018;8:1933–46. PMCID: PMC6220147 Wang S Luo J Zhang Z Dong D Shen Y Fang Y Hu L Liu M Dai C Peng S Fang Z Shang P Iron and magnetic: new research direction of the ferroptosis-based cancer therapy Am J Cancer Res 201881933 46 PMCID: PMC6220147Search in Google Scholar

Choi ME, Price DR, Ryter SW, Choi AMK. Necroptosis: a crucial pathogenic mediator of human disease. JCI Insight 2019;4(15):pii: 128834. doi: 10.1172/jci.insight.128834 Choi ME Price DR Ryter SW Choi AMK Necroptosis: a crucial pathogenic mediator of human disease JCI Insight 2019415pii 128834 10.1172/jci.insight.128834669382231391333Open DOISearch in Google Scholar

Mou Y, Wang J, Wu J, He D, Zhang C, Duan C, Li B. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hemat Oncol 2019;12(1):34. doi: 10.1186/s13045-019-0720-y Mou Y Wang J Wu J He D Zhang C Duan C Li B Ferroptosis, a new form of cell death: opportunities and challenges in cancer J Hemat Oncol 201912134 10.1186/s13045-019-0720-y644120630925886Open DOISearch in Google Scholar

Moreno-Gonzalez G, Vandenabeele P, Krysko DV. Necroptosis: A novel cell death modality and its potential relevance for critical care medicine. Am J Respir Crit Care Med 2016;194:415–28. doi: 10.1164/rccm.201510-2106CI Moreno-Gonzalez G Vandenabeele P Krysko DV Necroptosis: A novel cell death modality and its potential relevance for critical care medicine Am J Respir Crit Care Med 2016194415 28 10.1164/rccm.201510-2106CI27285640Open DOISearch in Google Scholar

Campisi J. Aging, cellular senescence, and cancer. Annu Rev Physiol 2013;75:685–705. doi: 10.1146/annurevphysiol-030212-183653 Campisi J Aging, cellular senescence, and cancer Annu Rev Physiol 201375685 705 10.1146/annurevphysiol-030212-183653Open DOISearch in Google Scholar

Aits S, Jaattela M. Lysosomal cell death at a glance. J Cell Sci 2013;126:1905–12. doi: 10.1242/jcs.091181 Aits S Jaattela M Lysosomal cell death at a glance J Cell Sci 20131261905 12 10.1242/jcs.09118123720375Open DOISearch in Google Scholar

Overholtzer M, Mailleux AA, Mouneimne G, Normand G, Schnitt SJ, King RW, Cibas ES, Brugge JS. A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell 2007;131:966–79. doi: 10.1016/j. cell.2007.10.040 Overholtzer M Mailleux AA Mouneimne G Normand G Schnitt SJ King RW Cibas ES Brugge JS A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion Cell 2007131966 79 10.1016/j.cell.2007.10.04018045538Open DOISearch in Google Scholar

Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science 2004;303:1532–5. doi: 10.1126/science.1092385 Brinkmann V Reichard U Goosmann C Fauler B Uhlemann Y Weiss DS Weinrauch Y Zychlinsky A Neutrophil extracellular traps kill bacteria Science 20043031532 5 10.1126/science.109238515001782Open DOISearch in Google Scholar

Green DR, Ferguson T, Zitvogel L, Kroemer G. Immunogenic and tolerogenic cell death. Nat Rev Immunol 2009;9:353–63. doi: 10.1038/nri2545 Green DR Ferguson T Zitvogel L Kroemer G Immunogenic and tolerogenic cell death Nat Rev Immunol 20099353 63 10.1038/nri2545281872119365408Open DOISearch in Google Scholar

Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev 2012;249:158–75. doi: 10.1111/j.1600-065X.2012.01146.x Tang D Kang R Coyne CB Zeh HJ Lotze MT PAMPs and DAMPs: signal 0s that spur autophagy and immunity Immunol Rev 2012249158 75 10.1111/j.1600-065X.2012.01146.x366224722889221Open DOISearch in Google Scholar

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B, Stockwell BR. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012;149:1060–72. doi: 10.1016/j.cell.2012.03.042 Dixon SJ Lemberg KM Lamprecht MR Skouta R Zaitsev EM Gleason CE Patel DN Bauer AJ Cantley AM Yang WS Morrison B Stockwell BR Ferroptosis: an iron-dependent form of nonapoptotic cell death Cell 20121491060 72 10.1016/j.cell.2012.03.042336738622632970Open DOISearch in Google Scholar

Hirschhorna T, Stockwell BR. The development of the concept of ferroptosis. Free Radic Biol Med 2019;133:130–43. doi: 10.1016/j.freeradbiomed.2018.09.043 Hirschhorna T Stockwell BR The development of the concept of ferroptosis Free Radic Biol Med 2019133130 43 10.1016/j.freeradbiomed.2018.09.043636888330268886Open DOISearch in Google Scholar

Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, Noel K, Jiang X, Linkermann A, Murphy ME, Overholtzer M, Oyagi A, Pagnussat GC, Park J, Ran Q, Rosenfeld CS, Salnikow K, Tang D, Torti FM, Torti SV, Toyokuni S, Woerpel KA, Zhang DD. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell 2017;171:273–85. doi: 10.1016/j. cell.2017.09.021 Stockwell BR Friedmann Angeli JP Bayir H Bush AI Conrad M Dixon SJ Fulda S Gascón S Hatzios SK Kagan VE Noel K Jiang X Linkermann A Murphy ME Overholtzer M Oyagi A Pagnussat GC Park J Ran Q Rosenfeld CS Salnikow K Tang D Torti FM Torti SV Toyokuni S Woerpel KA Zhang DD Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease Cell 2017171273 85 10.1016/j.cell.2017.09.021568518028985560Open DOISearch in Google Scholar

Proneth B, Conrad M. Ferroptosis and necroinflammation, a yet poorly explored link. Cell Death Differ 2019;26:14–24. doi: 10.1038/s41418-018-0173-9 Proneth B Conrad M Ferroptosis and necroinflammation, a yet poorly explored link Cell Death Differ 20192614 24 10.1038/s41418-018-0173-9629478630082768Open DOISearch in Google Scholar

Tan S, Schubert D, Maher P. Oxytosis: a novel form of programmed cell death. Curr Top Med Chem 2001;1:497–506. doi: 10.2174/1568026013394741 Tan S Schubert D Maher P Oxytosis: a novel form of programmed cell death Curr Top Med Chem 20011497 506 10.2174/156802601339474111895126Open DOISearch in Google Scholar

Zille M, Karuppagounder SS, Chen Y, Gough PJ, Bertin J, Finger J, Milner TA, Jonas EA, Ratan RR. Neuronal death after hemorrhagic stroke in vitro and in vivo shares features of ferroptosis and necroptosis. Stroke 2017;48:1033–43. doi: 10.1161/STROKEAHA.116.015609 Zille M Karuppagounder SS Chen Y Gough PJ Bertin J Finger J Milner TA Jonas EA Ratan RR Neuronal death after hemorrhagic stroke in vitro and in vivo shares features of ferroptosis and necroptosis Stroke 2017481033 43 10.1161/STROKEAHA.116.015609561376428250197Open DOISearch in Google Scholar

Masaldan S, Clatworthy SAS, Gamell C, Meggyesy PM, Rigopoulos AT, Haupt S, Haupt Y, Denoyer D, Adlard PA, Bush AI, Cater MA. Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis. Redox Biol 2018;14:100–15. doi: 10.1016/j. redox.2017.08.015 Masaldan S Clatworthy SAS Gamell C Meggyesy PM Rigopoulos AT Haupt S Haupt Y Denoyer D Adlard PA Bush AI Cater MA Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis Redox Biol 201814100 15 10.1016/j.redox.2017.08.015559626428888202Open DOISearch in Google Scholar

Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh H, Kang R, Tang D. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 2016;12:1425–8. doi: 10.1080/15548627.2016.1187366 Hou W Xie Y Song X Sun X Lotze MT Zeh H Kang R Tang D Autophagy promotes ferroptosis by degradation of ferritin Autophagy 2016121425 8 10.1080/15548627.2016.1187366496823127245739Open DOISearch in Google Scholar

Dowdle WE, Nyfeler B, Nagel J, Elling RA, Liu S, Triantafellow E, Menon S, Wang Z, Honda A, Pardee G, Cantwell J, Luu C, Cornella-Taracido I, Harrington E, Fekkes P, Lei H, Fang Q, Digan ME, Burdick D, Powers AF, Helliwell SB, D’Aquin S, Bastien J, Wang H, Wiederschain D, Kuerth J, Bergman P, Schwalb D, Thomas J, Ugwonali S, Harbinski F, Tallarico J, Wilson CJ, Myer VE, Porter JA, Bussiere DE, Finan PM, Labow MA, Mao X, Hamann LG, Manning BD, Valdez RA, Nicholson T, Schirle M, Knapp MS, Keaney EP, Murphy LO. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat Cell Biol 2014;16:1069–79. doi: 10.1038/ncb3053 Dowdle WE Nyfeler B Nagel J Elling RA Liu S Triantafellow E Menon S Wang Z Honda A Pardee G Cantwell J Luu C Cornella-Taracido I Harrington E Fekkes P Lei H Fang Q Digan ME Burdick D Powers AF Helliwell SB D’Aquin S Bastien J Wang H Wiederschain D Kuerth J Bergman P Schwalb D Thomas J Ugwonali S Harbinski F Tallarico J Wilson CJ Myer VE Porter JA Bussiere DE Finan PM Labow MA Mao X Hamann LG Manning BD Valdez RA Nicholson T Schirle M Knapp MS Keaney EP Murphy LO Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo Nat Cell Biol 2014161069 79 10.1038/ncb305325327288Open DOISearch in Google Scholar

Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 2014;509:105–9. doi: 10.1038/nature13148 Mancias JD Wang X Gygi SP Harper JW Kimmelman AC Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy Nature 2014509105 9 10.1038/nature13148418009924695223Open DOISearch in Google Scholar

Krainz T, Gaschler MM, Lim C. Sacher JR, Stockwell BR, Wipf P. A mitochondrial-targeted nitroxide is a potent inhibitor of ferroptosis. ACS Cent Sci 2016;2:653–9. doi: 10.1021/acscentsci.6b00199 Krainz T Gaschler MM Lim C Sacher JR Stockwell BR Wipf P A mitochondrial-targeted nitroxide is a potent inhibitor of ferroptosis ACS Cent Sci 20162653 9 10.1021/acscentsci.6b00199504344227725964Open DOISearch in Google Scholar

Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB, Kapralov AA, Amoscato AA, Jiang J, Anthonymuthu T, Mohammadyani D, Yang Q, Proneth B, Klein-Seetharaman J, Watkins S, Bahar I, Greenberger J, Mallampalli RK, Stockwell BR, Tyurina YY, Conrad M, Bayır H. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol 2017;13:81–90. doi: 10.1038/nchembio.2238 Kagan VE Mao G Qu F Angeli JP Doll S Croix CS Dar HH Liu B Tyurin VA Ritov VB Kapralov AA Amoscato AA Jiang J Anthonymuthu T Mohammadyani D Yang Q Proneth B Klein-Seetharaman J Watkins S Bahar I Greenberger J Mallampalli RK Stockwell BR Tyurina YY Conrad M Bayır H Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis Nat Chem Biol 20171381 90 10.1038/nchembio.2238550684327842066Open DOISearch in Google Scholar

Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B, Wang G. Ferroptosis: past, present and future. Cell Death Dis 2020;11:(Article number 88). doi: 10.1038/s41419-020-2298-2 Li J Cao F Yin HL Huang ZJ Lin ZT Mao N Sun B Wang G Ferroptosis: past, present and future Cell Death Dis 202011Article number 88 10.1038/s41419-020-2298-2699735332015325Open DOISearch in Google Scholar

Lei T, Bait T, Sun Y. Mechanisms of ferroptosis and relations with regulated cell death: a review. Front Physiol 2019;10:139. doi: 10.3389/fphys.2019.00139 Lei T Bait T Sun Y Mechanisms of ferroptosis and relations with regulated cell death: a review Front Physiol 201910139 10.3389/fphys.2019.00139639942630863316Open DOISearch in Google Scholar

Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M, Thomas AG, Gleason CE, Tatonetti NP, Slusher BS, Stockwell BR. Pharmacological inhibition of cystineglutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife 2014;e02523:1–25. doi: 10.7554/eLife.02523 Dixon SJ Patel DN Welsch M Skouta R Lee ED Hayano M Thomas AG Gleason CE Tatonetti NP Slusher BS Stockwell BR Pharmacological inhibition of cystineglutamate exchange induces endoplasmic reticulum stress and ferroptosis eLife 2014e025231 25 10.7554/eLife.02523Open DOISearch in Google Scholar

Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, Prokisch H, Trümbach D, Mao G, Qu F, Bayir H, Füllekrug J, Scheel CH, Wurst W, Schick JA, Kagan VE, Angeli JPF, Conrad M. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol 2017;13:91–8. doi: 10.1038/nchembio.2239 Doll S Proneth B Tyurina YY Panzilius E Kobayashi S Ingold I Irmler M Beckers J Aichler M Walch A Prokisch H Trümbach D Mao G Qu F Bayir H Füllekrug J Scheel CH Wurst W Schick JA Kagan VE Angeli JPF Conrad M ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition Nat Chem Biol 20171391 8 10.1038/nchembio.2239Open DOISearch in Google Scholar

Shimada K, Skouta R, Kaplan A, Yang WS, Hayano M, Dixon SJ, Brown LM, Valenzuela CA, Wolpaw AJ, Stockwell BR. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat Chem Biol 2016;12:497–503. doi: 10.1038/nchembio.2079 Shimada K Skouta R Kaplan A Yang WS Hayano M Dixon SJ Brown LM Valenzuela CA Wolpaw AJ Stockwell BR Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis Nat Chem Biol 201612497 503 10.1038/nchembio.2079Open DOISearch in Google Scholar

Lu B, Chen XB, Ying MD, He QJ, Cao J, Yang B. The role of ferroptosis in cancer development and treatment response. Front Pharmacol 2018;8:992. doi: 10.3389/fphar.2017.00992 Lu B Chen XB Ying MD He QJ Cao J Yang B The role of ferroptosis in cancer development and treatment response Front Pharmacol 20188992 10.3389/fphar.2017.00992Open DOISearch in Google Scholar

Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW, Massie A, Smolders I, Methner A, Pergande M, Smith SB, Ganapathy V, Maher P. The cystine/glutamate antiporter system Xc in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal 2013;18:522–55. doi: 10.1089/ars.2011.4391 Lewerenz J Hewett SJ Huang Y Lambros M Gout PW Kalivas PW Massie A Smolders I Methner A Pergande M Smith SB Ganapathy V Maher P The cystine/glutamate antiporter system Xc in health and disease: from molecular mechanisms to novel therapeutic opportunities Antioxid Redox Signal 201318522 55 10.1089/ars.2011.4391Open DOISearch in Google Scholar

Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, Roveri A, Peng X, Porto Freitas F, Seibt T, Mehr L, Aichler M, Walch A, Lamp D, Jastroch M, Miyamoto S, Wurst W, Ursini F, Arnér ESJ, Fradejas-Villar N, Schweizer U, Zischka H, Friedmann Angeli JP, Conrad M. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell 2018;172:409–22. doi: 10.1016/j. cell.2017.11.048 Ingold I Berndt C Schmitt S Doll S Poschmann G Buday K Roveri A Peng X Porto Freitas F Seibt T Mehr L Aichler M Walch A Lamp D Jastroch M Miyamoto S Wurst W Ursini F Arnér ESJ Fradejas-Villar N Schweizer U Zischka H Friedmann Angeli JP Conrad M Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis Cell 2018172409 22 10.1016/j.cell.2017.11.048Open DOISearch in Google Scholar

Gutteridge JM, Halliwell B. Iron toxicity and oxygen radicals. Baillieres Clin Haematol 1989;2:195–256. doi: 10.1016/s0950-3536(89)80017-4 Gutteridge JM Halliwell B Iron toxicity and oxygen radicals Baillieres Clin Haematol 19892195 256 10.1016/s0950-3536(89)80017-4Open DOISearch in Google Scholar

Yin H, Xu L, Porter NA. Free radical lipid peroxidation: mechanisms and analysis. Chem Rev 2011;111:5944–72. doi: 10.1021/cr200084z Yin H Xu L Porter NA Free radical lipid peroxidation: mechanisms and analysis Chem Rev 20111115944 72 10.1021/cr200084z21861450Open DOISearch in Google Scholar

Haeggström JZ, Funk CD. Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem Rev 2011;111:5866–98. doi: 10.1021/cr200246d Haeggström JZ Funk CD Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease Chem Rev 20111115866 98 10.1021/cr200246d21936577Open DOISearch in Google Scholar

Halliwell B, Cross CE. Oxygen-derived species: their relation to human disease and environmental stress. Environ Health Perspect 1994;10(Suppl 10):5–12. doi: 10.1289/ehp.94102s105 Halliwell B Cross CE Oxygen-derived species: their relation to human disease and environmental stress Environ Health Perspect 199410Suppl 105 12 10.1289/ehp.94102s10515669967705305Open DOISearch in Google Scholar

Kakhlon O, Cabantchik ZI. The labile iron pool: characterization, measurement, and participation in cellular processes. Free Radic Biol Med 2002;33:1037–46. doi: 10.1016/s0891-5849(02)01006-7 Kakhlon O Cabantchik ZI The labile iron pool: characterization, measurement, and participation in cellular processes Free Radic Biol Med 2002331037 46 10.1016/s0891-5849(02)01006-7Open DOISearch in Google Scholar

Cheng Z, Li Y. What is responsible for the initiating chemistry of iron-mediated lipid peroxidation: an update. Chem Rev 2007;107:748–66. doi: 10.1021/cr040077w Cheng Z Li Y What is responsible for the initiating chemistry of iron-mediated lipid peroxidation: an update Chem Rev 2007107748 66 10.1021/cr040077wOpen DOISearch in Google Scholar

Shintoku R,Takigawa Y, Yamada K, Kubota C, Yoshimoto Y, Takeuchi T, Koshiishi I, Torii S. Lipoxygenase mediated generation of lipid peroxides enhances ferroptosis induced by erastin and RSL3. Cancer Sci 2017;108:2187–94. doi: 10.1111/cas.13380 Shintoku RTakigawa Y Yamada K Kubota C Yoshimoto Y Takeuchi T Koshiishi I Torii S Lipoxygenase mediated generation of lipid peroxides enhances ferroptosis induced by erastin and RSL3 Cancer Sci 20171082187 94 10.1111/cas.13380Open DOISearch in Google Scholar

Kuhn H, Walther M, Kuban RJ Mammalian arachidonate 15-lipoxygenases structure, function, and biological implications. Prostaglandins Other Lipid Mediat 2002;68–69263–90. doi: 10.1016/s0090-6980(02)00035-7 Kuhn H Walther M Kuban RJ Mammalian arachidonate 15-lipoxygenases structure, function, and biological implications Prostaglandins Other Lipid Mediat 200268–69263 90 10.1016/s0090-6980(02)00035-7Open DOISearch in Google Scholar

Magtanong L, Ko PJ, Dixon SJ. Emerging roles for lipids in non-apoptotic cell death. Cell Death Differ 2016;23:1099–109. doi: 10.1038/cdd.2016.25 Magtanong L Ko PJ Dixon SJ Emerging roles for lipids in non-apoptotic cell death Cell Death Differ 2016231099 109 10.1038/cdd.2016.25539916926967968Open DOISearch in Google Scholar

Stoyanovsky DA, Tyurina YY, Shrivastava I, Bahar I, Tyurin VA, Protchenko O, Jadhav S, Bolevich SB, Kozlov AV, Vladimirov YA, Shvedova AA, Philpott CC, Bayir H, Kagan VE. Iron catalysis of lipid peroxidation in ferroptosis: regulated enzymatic or random free radical reaction. Free Radic Biol Med 2019;133:153–61. doi: 10.1016/j. freeradbiomed.2018.09.008 Stoyanovsky DA Tyurina YY Shrivastava I Bahar I Tyurin VA Protchenko O Jadhav S Bolevich SB Kozlov AV Vladimirov YA Shvedova AA Philpott CC Bayir H Kagan VE Iron catalysis of lipid peroxidation in ferroptosis: regulated enzymatic or random free radical reaction Free Radic Biol Med 2019133153 61 10.1016/j.freeradbiomed.2018.09.008655576730217775Open DOISearch in Google Scholar

Agmon E, Solon J, Bassereau P, Stockwell BR. Modeling the effects of lipid peroxidation during ferroptosis on membrane properties. Sci Rep 2018;8(1):5155. doi: 10.1038/s41598-018-23408-0 Agmon E Solon J Bassereau P Stockwell BR Modeling the effects of lipid peroxidation during ferroptosis on membrane properties Sci Rep 2018815155 10.1038/s41598-018-23408-0597994829581451Open DOISearch in Google Scholar

Poli G, Schaur RJ, Siems WG, Leonarduzzi G. 4-hydroxynonenal: a membrane lipid oxidation product of medicinal interest. Med Res Rev 2008;28:569–631. doi: 10.1002/med.20117 Poli G Schaur RJ Siems WG Leonarduzzi G 4-hydroxynonenal: a membrane lipid oxidation product of medicinal interest Med Res Rev 200828569 631 10.1002/med.2011718058921Open DOISearch in Google Scholar

Dixon SJ, Stockwell BR. The role of iron and reactive oxygen species in cell death. Nat Chem Biol 2014;10:9–17. doi: 10.1038/nchembio.1416 Dixon SJ Stockwell BR The role of iron and reactive oxygen species in cell death Nat Chem Biol 2014109 17 10.1038/nchembio.141624346035Open DOISearch in Google Scholar

Kuhn H, Banthiya S, van Leyen K. Mammalian lipoxygenases and their biological relevance. Biochim Biophys Acta 2015;1851:308–30. doi: 10.1016/j.bbalip.2014.10.002 Kuhn H Banthiya S van Leyen K Mammalian lipoxygenases and their biological relevance Biochim Biophys Acta 20151851308 30 10.1016/j.bbalip.2014.10.002437032025316652Open DOISearch in Google Scholar

Muckenthaler MU, Rivella S, Hentze MW, Galy B. A red carpet for iron metabolism. Cell 2017;168:344–61. doi: 10.1016/j.cell.2016.12.034 Muckenthaler MU Rivella S Hentze MW Galy B A red carpet for iron metabolism Cell 2017168344 61 10.1016/j.cell.2016.12.034570645528129536Open DOISearch in Google Scholar

Ng SW, Norwitz SG, Norwitz ER. The impact of iron overload and ferroptosis on reproductive disorders in humans: implications for preeclampsia. Int J Mol Sci 2019;20(13):3283. doi: 10.3390/ijms20133283 Ng SW Norwitz SG Norwitz ER The impact of iron overload and ferroptosis on reproductive disorders in humans: implications for preeclampsia Int J Mol Sci 201920133283 10.3390/ijms20133283665144531277367Open DOISearch in Google Scholar

Bogdan AR, Miyazawa M, Hashimoto H, Tsuji Y. Regulators of iron homeostasis: new players in metabolism, cell death, and disease. Trends Biochem Sci 2016;41:274–86. doi: 10.1016/j.tibs.2015.11.012 Bogdan AR Miyazawa M Hashimoto H Tsuji Y Regulators of iron homeostasis: new players in metabolism, cell death, and disease Trends Biochem Sci 201641274 86 10.1016/j.tibs.2015.11.012478325426725301Open DOISearch in Google Scholar

Enko D, Zelzer S, Fauler G, Herrmann M. Evaluation of a commercial liquid-chromatography high-resolution mass-spectrometry method for the determination of hepcidin-25. Biochem Med 2019;29(2):20701. doi: 10.11613/BM.2019.020701 Enko D Zelzer S Fauler G Herrmann M Evaluation of a commercial liquid-chromatography high-resolution mass-spectrometry method for the determination of hepcidin-25 Biochem Med 201929220701 10.11613/BM.2019.020701645791831015783Open DOISearch in Google Scholar

Xu W, Barrientos T, Andrews NC. Iron and copper in mitochondrial diseases. Cell Metab 2013;17:319–28. doi: 10.1016/j.cmet.2013.02.004 Xu W Barrientos T Andrews NC Iron and copper in mitochondrial diseases Cell Metab 201317319 28 10.1016/j.cmet.2013.02.004359479423473029Open DOISearch in Google Scholar

Kell DB. Towards a unifying, system biology understanding of-scale cellular death and destruction caused bay poorly liganded iron: Parkinson’s, Huntington’s, Alzheimer’s, prions, bactericides, chemical toxicology and others examples. Arch Toxycol 2010;84:825–89. doi: 10.1007/s00204-010-0577-x Kell DB Towards a unifying, system biology understanding of-scale cellular death and destruction caused bay poorly liganded iron: Parkinson’s, Huntington’s, Alzheimer’s, prions, bactericides, chemical toxicology and others examples Arch Toxycol 201084825 89 10.1007/s00204-010-0577-x298899720967426Open DOISearch in Google Scholar

Masaldan S, Bush AI, Devos D, Rolland AS, Moreau C. Striking while the iron is hot: iron metabolism and ferroptosis in neurodegeneration. Free Radic Biol Med 2019;133:221–33. doi: 10.1016/j.freeradbiomed.2018.09.033 Masaldan S Bush AI Devos D Rolland AS Moreau C Striking while the iron is hot: iron metabolism and ferroptosis in neurodegeneration Free Radic Biol Med 2019133221 33 10.1016/j.freeradbiomed.2018.09.03330266679Open DOISearch in Google Scholar

Gao M, Jiang X. To eat or not to eat - the metabolic flavor of ferroptosis. Cur Opin Cell Biol 2018;51:58–64. doi: 10.1016/j.ceb.2017.11.001 Gao M Jiang X To eat or not to eat - the metabolic flavor of ferroptosis Cur Opin Cell Biol 20185158 64 10.1016/j.ceb.2017.11.001594924929175614Open DOISearch in Google Scholar

Hao S, Liang B, Huang Q, Dong S, Wu Z, He W, Shi M. Metabolic networks in ferroptosis. Oncol Lett 2018;15:5405–11. doi: 10.3892/ol.2018.8066 Hao S Liang B Huang Q Dong S Wu Z He W Shi M Metabolic networks in ferroptosis Oncol Lett 2018155405 11 10.3892/ol.2018.8066584414429556292Open DOISearch in Google Scholar

Schnabel D, Salas-Vidal E, Narváez V, Sánchez-Carbente Mdel R, Hernández-García D, Cuervo R Covarrubias L. Expression and regulation of antioxidant enzymes in the developing limb support a function of ROS in interdigital cell death. Dev Biol 2006;291:291–9. doi: 10.1016/j. ydbio.2005.12.023 Schnabel D Salas-Vidal E Narváez V Sánchez-Carbente Mdel R Hernández-García D Cuervo R Covarrubias L Expression and regulation of antioxidant enzymes in the developing limb support a function of ROS in interdigital cell death Dev Biol 2006291291 9 10.1016/j.ydbio.2005.12.02316445905Open DOISearch in Google Scholar

Han C, Liu Y, Dai R, Ismail N, Su W, Li B. Ferroptosis and its potential role in human diseases. Fron Pharmacol 2020;11:239. doi: 10.3389/fphar.2020.00239 Han C Liu Y Dai R Ismail N Su W Li B Ferroptosis and its potential role in human diseases Fron Pharmacol 202011239 10.3389/fphar.2020.00239Open DOISearch in Google Scholar

Morris G, Berk M, Carvalho AF, Maes M, Walker AJ, Puri BK. Why should neuroscientists worry about iron? The emerging role of ferroptosis in the pathophysiology of neuroprogressive diseases. Behav Brain Res 2018;341:154–75. doi: 10.1016/j.bbr.2017.12.036 Morris G Berk M Carvalho AF Maes M Walker AJ Puri BK Why should neuroscientists worry about iron? The emerging role of ferroptosis in the pathophysiology of neuroprogressive diseases Behav Brain Res 2018341154 75 10.1016/j.bbr.2017.12.036Open DOISearch in Google Scholar

Romano A, Serviddio G, Calcagnini S, Villani R, Giudetti AM, Cassano T, Gaetani S. Linking lipid peroxidation and neuropsychiatric disorders: focus on 4-hydroxy-2-nonenal. Free Radic Biol Med 2017;111:281–93. doi: 10.1016/j. freeradbiomed.2016.12.046 Romano A Serviddio G Calcagnini S Villani R Giudetti AM Cassano T Gaetani S Linking lipid peroxidation and neuropsychiatric disorders: focus on 4-hydroxy-2-nonenal Free Radic Biol Med 2017111281 93 10.1016/j.freeradbiomed.2016.12.046Open DOISearch in Google Scholar

Muller M, Leavitt BR. Iron dysregulation in Huntington’s disease. J Neurochem 2014;130:328–50. doi: 10.1111/jnc.12739 Muller M Leavitt BR Iron dysregulation in Huntington’s disease J Neurochem 2014130328 50 10.1111/jnc.12739Open DOISearch in Google Scholar

Butterfield DA, Bader Lange ML, Sultana R. Involvements of the lipid peroxidation product, HNE, in the pathogenesis and progression of Alzheimer’s disease. Biochim Biophys Acta 2010;1801:924–9. doi: 10.1016/j.bbalip.2010.02.005 Butterfield DA Bader Lange ML Sultana R Involvements of the lipid peroxidation product, HNE, in the pathogenesis and progression of Alzheimer’s disease Biochim Biophys Acta 20101801924 9 10.1016/j.bbalip.2010.02.005Open DOISearch in Google Scholar

Toyokuni S, Okamoto K, Yodoi J, Hiai H. Persistent oxidative stress in cancer. FEBS Lett 1995;358:1–3. doi: 10.1016/0014-5793(94)01368-B Toyokuni S Okamoto K Yodoi J Hiai H Persistent oxidative stress in cancer FEBS Lett 19953581 3 10.1016/0014-5793(94)01368-BOpen DOISearch in Google Scholar

Yu H, Guo P, Xie X, Wang Y, Chen G. Ferroptosis, a new form of cell death, and its relationships with tumourous diseases. J Cell Mol Med 2017;21:648–57. doi: 10.1111/jcmm.13008 Yu H Guo P Xie X Wang Y Chen G Ferroptosis, a new form of cell death, and its relationships with tumourous diseases J Cell Mol Med 201721648 57 10.1111/jcmm.13008534562227860262Open DOISearch in Google Scholar

Xu T, Ding W, Ji X, Ao X, Liu Y, Yu W, Wang J. Molecular mechanisms of ferroptosis and its role in cancer therapy. J Cell Mol Med 2019;23:4900–12. doi: 10.1111/jcmm.14511 Xu T Ding W Ji X Ao X Liu Y Yu W Wang J Molecular mechanisms of ferroptosis and its role in cancer therapy J Cell Mol Med 2019234900 12 10.1111/jcmm.14511665300731232522Open DOISearch in Google Scholar

Kansanen JE, Kuosmanen SM, Leinonen H, Levonen AL. The Keap1/-Nrf2 pathway: mechanisms of activation and dysregulation in cance. Redox Biol 2013;1:45–9. doi: 10.1016/j.redox.2012.10.001 Kansanen JE Kuosmanen SM Leinonen H Levonen AL The Keap1/-Nrf2 pathway: mechanisms of activation and dysregulation in cance Redox Biol 2013145 9 10.1016/j.redox.2012.10.001375766524024136Open DOISearch in Google Scholar

Traverso N, Ricciarelli R, Nitti M, Marengo B, Furfaro AL, Pronzato MA, Marinari UM, Domenicotti C. Role of glutathione in cancer progression and chemoresistance. Oxid Med Cell Longev 2013;2013:972913. doi: 10.1155/2013/972913 Traverso N Ricciarelli R Nitti M Marengo B Furfaro AL Pronzato MA Marinari UM Domenicotti C Role of glutathione in cancer progression and chemoresistance Oxid Med Cell Longev 20132013972913 10.1155/2013/972913367333823766865Open DOISearch in Google Scholar

Toyokuni S, Ito F, Yamashita K, Okazaki Y, Akatsuka S. Iron and thiol redox signaling in cancer: an exquisite balance to escape ferroptosis. Free Radic Biol Med 2017;108:610–26. doi: 10.1016/j.freeradbiomed.2017.04.024 Toyokuni S Ito F Yamashita K Okazaki Y Akatsuka S Iron and thiol redox signaling in cancer: an exquisite balance to escape ferroptosis Free Radic Biol Med 2017108610 26 10.1016/j.freeradbiomed.2017.04.02428433662Open DOISearch in Google Scholar

Gnanapradeepan K, Basu S, Barnoud T, Budina-Kolomets A, Kung CP, Murphy ME. The p53 tumor suppressor in the control of metabolism and ferroptosis. Front Endocrinol 2018;9:124. doi: 10.3389/fendo.2018.00124 Gnanapradeepan K Basu S Barnoud T Budina-Kolomets A Kung CP Murphy ME The p53 tumor suppressor in the control of metabolism and ferroptosis Front Endocrinol 20189124 10.3389/fendo.2018.00124590419729695998Open DOISearch in Google Scholar

Wang S, Liao H, Li F, Ling D. A mini-review and perspective on ferroptosis-inducing strategies in cancer therapy. Chin Chem Lett 2019;30:847–52. doi: 10.1016/j.cclet.2019.03.025 Wang S Liao H Li F Ling D A mini-review and perspective on ferroptosis-inducing strategies in cancer therapy Chin Chem Lett 201930847 52 10.1016/j.cclet.2019.03.025Open DOISearch in Google Scholar

Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, Baer R, Gu W. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 2015;520:57–62. doi: 10.1038/nature14344 Jiang L Kon N Li T Wang SJ Su T Hibshoosh H Baer R Gu W Ferroptosis as a p53-mediated activity during tumour suppression Nature 201552057 62 10.1038/nature14344445592725799988Open DOISearch in Google Scholar

Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 2012;12:860–75. doi: 10.1038/nrc3380 Krysko DV Garg AD Kaczmarek A Krysko O Agostinis P Vandenabeele P Immunogenic cell death and DAMPs in cancer therapy Nat Rev Cancer 201212860 75 10.1038/nrc338023151605Open DOISearch in Google Scholar

Friedmann Angeli JP, Krysko DV, Conrad M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat Rev Cancer 2019;19:405–14. doi: 10.1038/s41568-019-0149-1 Friedmann Angeli JP Krysko DV Conrad M Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion Nat Rev Cancer 201919405 14 10.1038/s41568-019-0149-131101865Open DOISearch in Google Scholar

Kwon MY, Park E, Lee SJ, Chung SW. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death. Oncotarget 2015;6:24393–403. doi: 10.18632/oncotarget.5162 Kwon MY Park E Lee SJ Chung SW Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death Oncotarget 2015624393 403 10.18632/oncotarget.5162469519326405158Open DOISearch in Google Scholar

Shimada K, Hayano M, Pagano NC, Stockwell BR. Cell-line selectivity improves the predictive power of pharmacogenomic analyses and helps identify NADPH as biomarker for ferroptosis sensitivity. Cell Chem Biol 2016;23:225–35. doi: 10.1016/j.chembiol.2015.11.016 Shimada K Hayano M Pagano NC Stockwell BR Cell-line selectivity improves the predictive power of pharmacogenomic analyses and helps identify NADPH as biomarker for ferroptosis sensitivity Cell Chem Biol 201623225 35 10.1016/j.chembiol.2015.11.016479270126853626Open DOISearch in Google Scholar

Tonnus W, Linkermann A. “Death is my Heir” - Ferroptosis connects cancer pharmacogenomics and ischemia-reperfusion injury. Cell Chem Biol 2016;23:202–3. doi: /10.1016/j. chembiol.2016.02.005 Tonnus W Linkermann A. “Death is my Heir” - Ferroptosis connects cancer pharmacogenomics and ischemia-reperfusion injury Cell Chem Biol 201623202 3 10.1016/j.chembiol.2016.02.00526971867Open DOISearch in Google Scholar

Harris IS, Treloar AE, Inoue S, Sasaki M, Gorrini C, Lee KC, Yung KY, Brenner D, Knobbe-Thomsen CB, Cox MA, Elia A, Berger T, Cescon DW, Adeoye A, Brüstle A, Molyneux SD, Mason JM, Li WY, Yamamoto K, Wakeham A, Berman HK, Khokha R, Done SJ, Kavanagh TJ, Lam CW, Mak TW. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 2015;27:211–22. doi: 10.1016/j.ccell.2014.11.019 Harris IS Treloar AE Inoue S Sasaki M Gorrini C Lee KC Yung KY Brenner D Knobbe-Thomsen CB Cox MA Elia A Berger T Cescon DW Adeoye A Brüstle A Molyneux SD Mason JM Li WY Yamamoto K Wakeham A Berman HK Khokha R Done SJ Kavanagh TJ Lam CW Mak TW Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression Cancer Cell 201527211 22 10.1016/j.ccell.2014.11.01925620030Open DOISearch in Google Scholar

Chen D, Eyupoglu IY, Savaskan N. Ferroptosis and cell death analysis by flow cytometry. Methods Mol Biol 2017;1601:71–7. doi: 10.1007/978-1-4939-6960-9_6 Chen D Eyupoglu IY Savaskan N Ferroptosis and cell death analysis by flow cytometry Methods Mol Biol 2017160171 7 10.1007/978-1-4939-6960-9_628470518Open DOISearch in Google Scholar

Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, Kang R, Tang D. Ferroptosis: process and function. Cell Death Differ 2016;23:369–79. doi: 10.1038/cdd.2015.158 Xie Y Hou W Song X Yu Y Huang J Sun X Kang R Tang D Ferroptosis: process and function Cell Death Differ 201623369 79 10.1038/cdd.2015.158507244826794443Open DOISearch in Google Scholar

eISSN:
1848-6312
Języki:
Angielski, Slovenian
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Basic Medical Science, other