Otwarty dostęp

Achievements in Micromagnetic Techniques of Steel Plastic Stage Evaluation


Zacytuj

1. Hosford W.F.: Fundamentals of Engineering Plasticity. Cambridge University Press, New York, USA, 2013.10.1017/CBO9781139775373Search in Google Scholar

2. Kurti N.: Selected Works of Louis Neel. 1st Edition, CRC Press, Boca Raton, USA, 1988.Search in Google Scholar

3. Stoner E. C.: Ferromagnetism: magnetization curves. Rep. Prog. Phys. 13 (1950) 83-183.10.1088/0034-4885/13/1/304Search in Google Scholar

4. Kittel C.: Physical Theory of Ferromagnetic Domains. Rev. Mod. Phys. 21 (1949) 541-583.10.1103/RevModPhys.21.541Search in Google Scholar

5. Stewart K. H.: Ferromagnetic Domains, Cambridge University Press, New York, USA, 1954.10.1063/1.3061400Search in Google Scholar

6. Chikazumi S.:. Physics of Magnetism. Willey, New York. 1964.Search in Google Scholar

7. Chen C.W. Magnetism and Metallurgy of Soft Magnetic Materials. North Holland, Amsterdam, 1977.10.1016/B978-0-7204-0706-8.50012-5Search in Google Scholar

8. Heidenreich R.D., Shockley W.: Electron Microscope and Electron-Diffraction Study of Slip in Metal Crystals. Journal of Applied Physics 18 (1947) 1029-1031.10.1063/1.1697576Search in Google Scholar

9. Williams H. J., Bozorth R. M., Shockley W.: Magnetic Domain Patterns on Single Crystals of Silicon Iron. Phys. Rev. 75 (1949) 155-178.10.1103/PhysRev.75.155Search in Google Scholar

10. da Silva Júnior A.F., de Campos M. F., Martins A.S.: Domain Wall Structure in Metals: a New Approach to an Old Problem. Journal of Magnetism and Magnetic Materials, 442 (2017) 236-241.10.1016/j.jmmm.2017.06.134Search in Google Scholar

11. Bloch, F.: Zur Theorie der Austauschproblems und der Remanenzerscheinung der Feromagnetika. Z. Phys. 74 (1932) 295-335.10.1007/978-3-662-41138-4_1Search in Google Scholar

12. Moriya T., Takahashi Y.: Itinerant Electron Magnetism. Ann. Rev. Mater. Sci. 14 (1984) 1-25.10.1146/annurev.ms.14.080184.000245Search in Google Scholar

13. Shull, R. D.: Clifford Glenwood Shull 1915-2001. A Biographical Memoir. Available at: http://www.nasonline.org/publications/biographical-memoirs/memoir-pdfs/shull-clifford.pdfSearch in Google Scholar

14. Stearns, M. B.: On the Origin of Ferromagnetism in Fe, Co, and Ni. 1990. Available at: http://garfield.library.upenn.edu/classics1990/A1990DV41200001.pdfSearch in Google Scholar

15. Aharoni, A.: Exchange energy near singular points or lines. Journal of Applied Physics 51 (1980) 3330-3332.10.1063/1.328042Search in Google Scholar

16. Aharoni, A.: lntroduction to the Theory of Ferromagnetism. Second Edition. Oxford University press, Oxford, 1996, (reprinted 2007). p. 137.Search in Google Scholar

17. Brown Jr W. F.: Domains, micromagnetics, and beyond: Reminiscences and assessments. Journal of Applied Physics 49, (1978) 1937-1942.10.1063/1.324811Search in Google Scholar

18. Chang C.R., Lee C.M., Yang J.S.: Magnetization curling reversal for an infinite hollow cylinder. Physical Review B 50 (1994) 6461-6464.10.1103/PhysRevB.50.6461Search in Google Scholar

19. da Silva Jr A. F., Martins A.S., de Campos M. F.: The Exchange Energy Term and the Curling Reversal Mode in Hard Magnetic Materials Manufactured by Powder Metallurgy. Materials Science Forum 899 (2017) 549-553.10.4028/www.scientific.net/MSF.899.549Search in Google Scholar

20. de Campos M. F.: Virtues and Weakness of Brown Micromagnetics. Materials Science Forum 802 (2014) 613-618.10.4028/www.scientific.net/MSF.802.613Search in Google Scholar

21. Kondorsky E.I.: On the stability of certain magnetic modes in fine ferromagnetic particles. IEEE Trans. Magn. 15 (1979) 1209-1214.10.1109/TMAG.1979.1060340Search in Google Scholar

22. Shtrikman S., Treves D.: The coercive force and rotational hysteresis of elongated ferromagnetic particles. J. Phys. Radium, 20 (2-3), (1959) 286-289.10.1051/jphysrad:01959002002-3028600Search in Google Scholar

23. Cullity B. D., Graham C. D.: Introduction to Magnetic Materials, 2nd edition, Willey – IEEE Press, Piscataway, USA, 2008.10.1002/9780470386323Search in Google Scholar

24. Lilley, B.A.: Energies and widths of domain boundaries in ferromagnetics. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 41 (1950) 792–813.10.1080/14786445008561011Search in Google Scholar

25. Kvashnin Y. O., Cardias R., Szilva A., Di Marco I., Katsnelson M. I., Lichtenstein A. I., Nordström L., Klautau A. B., Eriksson O.: Microscopic Origin of Heisenberg and Non-Heisenberg Exchange Interactions in Ferromagnetic bcc Fe Phys. Rev. Lett. 116 (2016) 217202.10.1103/PhysRevLett.116.217202Search in Google Scholar

26. Pajda, M., Kudrnovský, J., Turek, I., Drchal, V., Bruno, P.: Ab initio calculations of exchange interactions, spin-wave stiffness constants, and Curie temperatures of Fe, Co, and Ni. Phys. Rev. B64 (2001) 174402.10.1103/PhysRevB.64.174402Search in Google Scholar

27. Turek I., Kudrnovský J., Drchal V., Bruno P.: Exchange interactions, spin waves, and transition temperatures in itinerant magnets. Philosophical Magazine 86 (2006) 1713-1752.10.1080/14786430500504048Search in Google Scholar

28. Gilbert, T. L.: A phenomenological theory of damping in ferromagnetic materials. IEEE Trans. Mag. 40 (2004) 3443–3449.10.1109/TMAG.2004.836740Search in Google Scholar

29. Sun Z. Z., Wang X. R.: Fast magnetization switching of Stoner particles: A nonlinear dynamics picture. Phys. Rev. B 71 (2005) 174430.10.1103/PhysRevB.71.174430Search in Google Scholar

30. Zhu B., Lo C. C. H., Lee S. J., Jiles D. C.: Micromagnetic modeling of the effects of stress on magnetic properties. J. Appl. Phys. 89 (2001) 7009-7011.10.1063/1.1363604Search in Google Scholar

31. Landau, L.D., Lifshitz, E.M.: On the Theory of the Dispersion of Magnetic Permeability in Ferromagnetic Bodies. Phys. Z. Sowjetunion, 8 (1935) 153-164.Search in Google Scholar

32. Manchon A., Zhang S.: Spin Torque Effects in Magnetic Systems: Theory. in E. Y. Tsymbal, I. Zutic (eds.) - Handbook of spin transport and magnetism. CRC, Boca Raton, USA, 2012, pp. 157-178.Search in Google Scholar

33. Slonczewski J. C.: Current-driven excitation of magnetic multilayers, J. Magn. Magn. Mater., 159 (1996) L1–L7.10.1016/0304-8853(96)00062-5Search in Google Scholar

34. Hurst J., Hervieux P.A., Manfredi G.: Spin current generation by ultrafast laser pulses in ferromagnetic nickel films. Physical Review B 97 (2018) 01442410.1103/PhysRevB.97.014424Search in Google Scholar

35. Manfredi G., Hurst J., Hervieux P.A.: Ultrafast spin current generation in ferromagnetic thin films. San Diego, California, USA (2018).10.1117/12.2319953Search in Google Scholar

36. Campbell I. A.: Frustrated Itinerant Magnetism. Brazilian Journal of Physics 25 (1995) 295-301.Search in Google Scholar

37. Hathaway K.B.: Theory of Exchange Coupling in Magnetic Multilayers. in:G.A. Prinz, Bretislav Heinrich, J. Anthony C. Bland (Eds.) - Ultrathin Magnetic Structures II Measurement Techniques and Novel Magnetic Properties. Springer Berlin Heidelberg, 2005, pp. 45-194.Search in Google Scholar

38. de Campos M.F., Campos M. A., Landgraf F. J. G., Padovese L. R.: Anisotropy study of grain oriented steels with Magnetic Barkhausen Noise. J. Phys. Conf. Ser. 303 (2011) 012020.10.1088/1742-6596/303/1/012020Search in Google Scholar

39. Leuning N., Steentjes S., Stöcker A., Kawalla R., Wei X., Dierdorf J., Hirt G., Roggenbuck S., Korte-Kerzel S., Weiss H.A., Volk W., Hameyer K.: Impact of the interaction of material production and mechanical processing on the magnetic properties of non-oriented electrical steel. AIP Advances 8 (2018) 04760110.1063/1.4994143Search in Google Scholar

40. Najgebauer M.: Scaling-based prediction of magnetic anisotropy in grain-oriented steels, Archives of Electrical Engineering 66 (2017) 423-432.10.1515/aee-2017-0032Search in Google Scholar

41. Bunge, H.-J. The basic concepts of texture investigation in polycrystalline materials. Steel Res. 62 (1991) 530-541.10.1002/srin.199100447Search in Google Scholar

42. de Campos, M. F.: Anisotropy of Steel Sheets and Consequence for Epstein Test: I Theory. in XVIII IMEKO WORLD CONGRESS Metrology for a Sustainable Development September, 17 – 22, 2006, Rio de Janeiro, Brazil.Search in Google Scholar

43. de Campos M. F., Landgraf F. J. G.: Anisotropy of Steel Sheets and Consequence for Epstein Test: II Experiment” in XVIII IMEKO WORLD CONGRESS Metrology for a Sustainable Development, September, 17 – 22, 2006, Rio de Janeiro, Brazil.Search in Google Scholar

44. Landgraf F.J.G., Yonamine T., Emura M., Cunha M.A.: Modelling the angular dependence of magnetic properties of afully processed non-oriented electrical steel. J. Magn. Magn. Mat. 254–255 (2003) 328–330.10.1016/S0304-8853(02)00827-2Search in Google Scholar

45. de Campos M. F., Tschiptschin A. P., Landgraf F. J. G.. A method to estimate magnetic induction from texture in non-oriented electrical steels. J. Magn. Magn. Mat. 226 (2001) 1536-1538.10.1016/S0304-8853(01)00027-0Search in Google Scholar

46. Hothersall D.C.: The investigation of domain walls in thin sections of iron by the electron interference method. Phil. Mag. 20 (1969) 89–112.10.1080/14786436908228538Search in Google Scholar

47. de Campos M. F.: A General Coercivity Model for Soft Magnetic Materials. Materials Science Forum 727-728 (2012) 157-16210.4028/www.scientific.net/MSF.727-728.157Search in Google Scholar

48. Guyot M., Globus A.: Determination of domain wall energy and the exchange constant from hysteresis in ferromagnetic polycrystals. J. Physique Colloque C1, 38 (1977) pp. C1-157– C1-162, supplement10.1051/jphyscol:1977131Search in Google Scholar

49. de Campos M.F., de Castro, J.A.: An Overview on Nucleation Theories and Models. Journal of Rare Earths 37 (2019) 1015-1022.10.1016/j.jre.2019.02.002Search in Google Scholar

50. Soboyejo W.: Mechanical Properties of Engineered Materials. Marcel Dekker, New York, 2003.10.1201/9780203910399Search in Google Scholar

51. Ferguson J. B., Schultz B.F., Venugopalan D., Lopez H.F., Rohatgi P.K., Cho K., Kim C.S.. On the superposition of strengthening mechanisms in dispersion strengthened alloys and metal-matrix nanocomposites: Considerations of stress and energy. Met. Mater. Int. 20 (2014) 375-388.10.1007/s12540-014-2017-6Search in Google Scholar

52. Chauhan A., Bergner F., Etienne A., Aktaa J., de Carlan Y., Heintze C., Litvinov D., Hernandez-Mayoral M., Onorbe E., Radiguet B., Ulbricht A.. Microstructure characterization and strengthening mechanisms ofoxide dispersion strengthened (ODS) Fe-9%Cr and Fe-14%Cr extruded bars. Journal of Nuclear Materials 495 (2017) 6-19.10.1016/j.jnucmat.2017.07.060Search in Google Scholar

53. de Campos M. F.: Coercivity Mechanism in Hard and Soft Sintered Magnetic Materials. Materials Science Forum 802 (2014) 563-568.10.4028/www.scientific.net/MSF.802.563Search in Google Scholar

54. Vourna P., Hristoforou E., Ktena A., Svec P., Mangiorou E.: Dependence of Magnetic Permeability on Residual Stresses in Welded Steels. IEEE Transactions on Magnetics 53 (2017) 6200704.10.1109/TMAG.2016.2628025Search in Google Scholar

55. Hristoforou E., Ktena A., Vourna P., Mangiorou E., Aggelopoulos S., Svec P., Hervoches C.: State of the Art on Magnetic Properties – Stress Correlation in Steels. In: 19th World Conference on Non-Destructive Testing 2016.Search in Google Scholar

56. de Campos M.F., de Castro J.A.: Predicting Recoil Curves in Stoner–Wohlfarth Anisotropic Magnets. Acta Physica Polonica A 136 (2019) 737-739.10.12693/APhysPolA.136.737Search in Google Scholar

57. de Campos M. F., Castro J. A.: Calculation of Recoil Curves in Isotropic and Anisotropic Stoner–Wohlfarth Materials. IEEE Transactions on Magnetics 56 (2020) 7512304.10.1109/TMAG.2019.2957147Search in Google Scholar

58. de Campos M. F., Emura M., Landgraf F.J.G.. Consequences of magnetic aging for iron losses in electrical steels. Journal of Magnetism and Magnetic Materials 304 (2006) e593– e59510.1016/j.jmmm.2006.02.185Search in Google Scholar

59. Costa L.F.T., Gerhardt G.J.L., Missell F.P., de Campos M.F.: Interpretation of Magnetic Barkhausen Noise Bursts in Low Frequency Measurements. Acta Physica Polonica A 136 (2019) 740-744.10.12693/APhysPolA.136.740Search in Google Scholar

60. Costa L.F.T., de Campos M.F., Gerhardt G.J.L., Missell F.P.: Hysteresis and Magnetic Barkhausen Noise for SAE 1020 and 1045 Steels With Different Microstructures. IEEE Transactions on Magnetics 50 (2014) 2001504.10.1109/TMAG.2013.2287701Search in Google Scholar

61. Hosford W. F.: Physical Metallurgy, Second Edition. CRC Press, Boca Raton, 2010.Search in Google Scholar

62. Gao Y., Tian G.Y., Qiu F., Wang P., Ren W., Gao B.: Investigation of Magnetic Barkhausen Noise and Dynamic Domain Wall Behavior for Stress Measurement. In: 19th World Conference on Non-Destructive Testing 2016.Search in Google Scholar

63. Augustyniak B., Sablik M. J., Landgraf F.J.G., Jiles D.C., Chmielewski M., Piotrowski L., Moses A..J.: Lack of magnetoacoustic emission in iron with 6.5% silicon. Journal of Magnetism and Magnetic Materials 320 (2008), 2530-2533.10.1016/j.jmmm.2008.04.109Search in Google Scholar

64. Piotrowski L., Augustyniak B., Chmielewski M., Kowalewsk Z.: Possibility of Application of Magnetoacoustic Emission for the Assessment of Plastic Deformation Level in Ferrous Materials. IEEE Transactions on Magnetics 47 (2011) 2087-2092.10.1109/TMAG.2011.2121086Search in Google Scholar

65. Piotrowski L., Chmielewski M., Augustyniak B.: On the correlation between magnetoacoustic emission and magnetostriction dependence on the applied magnetic field. Journal of Magnetism and Magnetic Materials 410 (2016) 34–40.10.1016/j.jmmm.2016.03.018Search in Google Scholar

66. Williams H. J., Shockley W., Kittel C.: Studies of the Propagation Velocity of a Ferromagnetic Domain Boundary Phys. Rev. 80 (1950) 1090-1094.10.1103/PhysRev.80.1090Search in Google Scholar

67. Pry R. H., Bean C. P.: Calculation of the Energy Loss in Magnetic Sheet Materials Using a Domain Model. J. Appl. Phys. 29 (1958) 532-533.10.1063/1.1723212Search in Google Scholar

68. Franco F.A., González M.F.R., de Campos M.F., Padovese L.R.: Relation between magnetic Barkhausen noise and hardness for Jominy quench tests in SAE 4140 and 6150 steels. Journal of Nondestructive Evaluation 32 (2013) 93-103.10.1007/s10921-012-0162-8Search in Google Scholar

69. de Campos M. F., de Castro J. A.: The Critical Volume for Nucleation. Materials Science Forum 660-661 (2010) 279-283.10.4028/www.scientific.net/MSF.660-661.279Search in Google Scholar

70. Belanger A., Narayanan R.: Calculation of Hardness Using High and Low Magnetic Fields. in ECNDT 2006 - Tu.4.1.1.Search in Google Scholar

71. de Campos M. F., da Silva, F.A.S.; de Castro J.A.: Stoner-Wohlfarth Model for Nanocrystalline Anisotropic Sm2Co17 Magnets. Materials Science Forum 775-776 (2014) 431-436.10.4028/www.scientific.net/MSF.775-776.431Search in Google Scholar

72. Nicolis G., Prigogine I.: Self-organization in nonequilibrium systems. John Wiley & Sons, New York, USA, 1977.Search in Google Scholar

73. Brown L M.: Linear Work-Hardening and Secondary Slip in Crystals. In. Frank R.N. Nabarro,M.S. Duesbery (Eds.) Dislocations in Solids, Volume 11, Chapter 58, North-Holland, Amsterdam, 2002.10.1016/S1572-4859(02)80009-2Search in Google Scholar

74. Haller T.R., Kramer J.J.: Observation of Dynamic Domain Size Variation in a Silicon-Iron Alloy J. Appl. Phys. 41 (1970) 1034-1035.10.1063/1.1658804Search in Google Scholar

75. de Campos M. F.: Loss Separation Model: A Tool for Improvement of Soft Magnetic Materials. Materials Science Forum 869 (2016) 596-601.10.4028/www.scientific.net/MSF.869.596Search in Google Scholar

76. Rodrigues-Jr D.L., Silveira J.R.F., Gerhardt G.J.L., Missell F.P., Landgraf, F.J.G., Machado R., de Campos M.F.: Effect of plastic deformation on the excess loss of electrical steel. IEEE Transactions on Magnetics 48 (2012) 1425-1428.10.1109/TMAG.2011.2174214Search in Google Scholar

77. Beckley, P. Thompson J.E.. Influence of inclusions on domain-wall motion and power loss in oriented electrical steel. PROC. IEE, 117 (1970) 2194-2200.10.1049/piee.1970.0401Search in Google Scholar

78. Trindade M.A., de Campos, M.F. Landgraf, F.J.G., Lima, N.N. Almeida, A. Influence of Thickness on Magnetic and Microstructural Properties in Electrical Steels Semi-Processed of Low Efficiency. Materials Science Forum 930 (2018) 466-471.10.4028/www.scientific.net/MSF.930.466Search in Google Scholar

79. de Campos M F.: Optimized Materials for Wind Turbines and Electric Motors. in 2018-Sustainable Industrial Processing Summit vol 8, (2018) pp. 51-58.Search in Google Scholar

80. de Campos M.F.: Interpretation of Loss Separation with the Haller–Kramer Model. Acta Physica Polonica A 136 (2019) 705-708.10.12693/APhysPolA.136.705Search in Google Scholar

81. Petryshynets I., Ková F., Petrov B., Falat L. Puchý V.: Improving the Magnetic Properties of Non-Oriented Electrical Steels by Secondary Recrystallization Using Dynamic Heating Conditions. Materials 12 (2019) 1914.10.3390/ma12121914Search in Google Scholar

82. de Campos M.F.: Methods for texture improvement in electrical steels. Przegląd Elektrotechniczny, 95 (2019) 7-11.10.15199/48.2019.07.02Search in Google Scholar

83. Niku-Lari A.: Advances in Surface Treatments - Residual Stresses. Technology, Applications, Effects. Elsevier Ltd, Pergamon Press, Oxford, UK, 1987.10.1016/B978-0-08-034062-3.50005-7Search in Google Scholar

84. Macherauch. E.: Introduction to Residual Stress. In A. Niku-Lari (ed) Advances in Surface Treatments, vol. IV. Elsevier Ltd, Pergamon Press, Oxford, UK, 1987.Search in Google Scholar

85. Totten G., Howes M., Inoue T.: Handbook of Residual Stress and Deformation of Steel (2001). ASM, Materials Park, Ohio, USA, 2002.Search in Google Scholar

86. Knott J. F., Sih G. C., Sommer E., Dahl W.: Application of Fracture Mechanics to Materials and Structures: Proceedings of the International Conference on Application of Fracture Mechanics to Materials and Structures, held at the Hotel Kolpinghaus, Freiburg, F.R.G., June 20–24, 1983. Springer Netherlands, 1984.Search in Google Scholar

87. Hauk V.: Structural and Residual Stress Analysis by Nondestructive Methods Evaluation - Application – Assessment, Elsevier, Amsterdam 1997.Search in Google Scholar

88. Volterra V.: Sur l’équilibre des corps élastiques multiplement connexes. Annales scientifiques de l’É.N.S. 3e série, tome 24 (1907) 401-517.10.24033/asens.583Search in Google Scholar

89. Read Jr, W. T.: Dislocations in Crystals. McGraw-Hill, New York, USA, 1953.Search in Google Scholar

90. Hull D., Bacon D. J.: Introduction to Dislocations. 5nd Edition, Elsevier, Amsterdam, 2011.10.1016/B978-0-08-096672-4.00003-7Search in Google Scholar

91. Stibitz G.R.: Energy of lattice distortion. Phys. Rev. 49 (1936) 862.Search in Google Scholar

92. Zhao G.-H., Liang X.Z., Kim B., Rivera-Díaz-del-Castillo P.E.J.: Modelling strengthening mechanisms in beta-type Ti alloys. Materials Science and Engineering: A 756 (2019) 156-16010.1016/j.msea.2019.04.027Search in Google Scholar

93. Capó Sánchez J., de Campos M.F., Padovese L.R.: Magnetic Barkhausen emission in lightly deformed AISI 1070 steel. Journal of Magnetism and Magnetic Materials 324 (2012) 11-14.10.1016/j.jmmm.2011.07.014Search in Google Scholar

94. Gerstein G., Klusemann B., Bargmann S., Schaper, M.: Characterization of the Microstructure Evolution in IF-Steel and AA6016 during Plane-Strain Tension and Simple Shear. Materials 8 (2015) 285–301.10.3390/ma8010285Search in Google Scholar

95. de Campos M.F., Sablik M.J., Landgraf F.J.G., Hirsch T.K., Machado R., Magnabosco R., Gutierrez C.J., Bandyopadhyay A.: Effect of rolling on the residual stresses and magnetic properties of a 0.5% Si electrical steel. Journal of Magnetism and Magnetic Materials. 320 (2008) e377-e38010.1016/j.jmmm.2008.02.104Search in Google Scholar

96. Callister W.D., Rethwisch D.G.: Materials science and engineering an introduction, 8th Edition, John Wiley, New York, USA, 2009.Search in Google Scholar

97. Na S.H., Seol J.B., Jafari M., Park C.G.: A Correlative Approach for Identifying Complex Phases by Electron Backscatter Diffraction and Transmission Electron Microscopy. Applied Microscopy 47 (2017) 43-49.10.9729/AM.2017.47.1.43Search in Google Scholar

98. Moussa C., Bernacki M., Besnard R., Bozzolo N.: Statistical analysis of dislocations and dislocation boundaries from EBSD data. Ultramicroscopy. 179 (2017) 63-72.10.1016/j.ultramic.2017.04.005Search in Google Scholar

99. Kalácska S., Groma I., Borbély A., Ispánovity P.D.: Comparison of the dislocation density obtained by HR-EBSD and X-ray profile analysis. Appl. Phys. Lett. 110 (2017) 09191210.1063/1.4977569Search in Google Scholar

100. Adams B.L., Kacher J.: EBSD-Based Microscopy: Resolution of Dislocation Density. CMC - Computers, Materials & Continua 14 (2009) 185-196.Search in Google Scholar

101. de Campos M.F., da Silva F.R.F., Lins J.F.C., Monlevade E.F., Alberteris Campos M., Perez-Benitez J., Goldenstein H., Padovese L.R..: Comparison of the Magnetic Barkhausen Noise for Low Carbon Steel in Deformed and Annealed Conditions.. IEEE Transactions on Magnetics 49 (2013) 1305-1309.10.1109/TMAG.2012.2231871Search in Google Scholar

102. Oding I. A., Zubarev P. V., Fridman Z. G.: Polygonization in metals. Metal Science and Heat Treatment of Metals. 3 (1961) 1–5.10.1007/BF00815231Search in Google Scholar

103. Hazra S.S., Gazder A.A., Pereloma E.V.: Stored energy of a severely deformed interstitial free steel. Materials Science and Engineering A 524 (2009) 158–167.10.1016/j.msea.2009.06.033Search in Google Scholar

104. Ossart F., Hug E., Hubert O., Buvat C., Billardon R.: Effect of punching on electrical steels: Experimental and numerical coupled analysis. IEEE Transactions on Magnetics 36 (2000) 3137-3140.10.1109/20.908712Search in Google Scholar

105. Weiss H.A., Leuning N., Steentjes S., Hameyer K., Andorfer T., Jenner S, Volk W.: Influence of shear cutting parameters on the electromagnetic properties of non-oriented electrical steel sheets. Journal of Magnetism and Magnetic Materials 421 (2017) 250-259.10.1016/j.jmmm.2016.08.002Search in Google Scholar

106. Steentjes S., Franck D., Hameyer K., Vogt S., Bednarz M., Volk W., Dierdorf J., Hirt G., Schnabel V., Mathur H. N., Korte-Kerzel S.: On the Effect of Material Processing: Microstructural and Magnetic Properties of Electrical Steel Sheets in: 2014 4th International Electric Drives Production Conference (EDPC). INSPEC Accession Number: 14833374. DOI: 10.1109/EDPC.2014.698443610.1109/EDPC.2014.6984436Search in Google Scholar

107. De Keijser Th. H., Langford J. I., Mittemeijer E. J., Vogels A. B. P.: Use of the Voigt Function in a Single-Line Method for the Analysis of X-ray Diffraction Line Broadening. J. Appl. Cryst. 15 (1982) 308-31410.1107/S0021889882012035Search in Google Scholar

108. Ungár T.: Strain Broadening Caused by Dislocations. Materials Science Forum, 278-281 (1998) 151-157.10.4028/www.scientific.net/MSF.278-281.151Search in Google Scholar

109. Murasawa K., Takamura M., Kumagai M., Ikeda Y., Suzuki H., Otake Y., Hama T., Suzuki S.: Determination Approach of Dislocation Density and Crystallite Size Using a Convolutional Multiple Whole Profile Software. Materials Transactions 59 (2018) 1135 to 1141.10.2320/matertrans.M2017380Search in Google Scholar

110. Ungár T.: Dislocation model of strain anisotropy. Powder Diffraction 23 (2008) 125-132.10.1154/1.2918549Search in Google Scholar

111. Kerber, M.B., Zehetbauer, M.J., Schafler, E., Spieckermann F. C., Bernstorff S., Ungar T.: JOM 63 (2011) 61-70.10.1007/s11837-011-0115-1Search in Google Scholar

112. de Campos M.F., Loureiro S.A., Rodrigues D., Silva M.C.A., Lima, N.B.: Estimative of the Stacking Fault Energy for a FeNi(50/50) Alloy and a 316L Stainless Steel. Materials Science Forum 591-593 (2008) 3-7.10.4028/www.scientific.net/MSF.591-593.3Search in Google Scholar

113. de Campos M. F.: Selected Values for the Stacking Fault Energy of Face Centered Cubic Metals. Materials Science Forum 591-593(2008) 708-711.10.4028/www.scientific.net/MSF.591-593.708Search in Google Scholar

114. Taylor G. I., Elam C. F.: The distortion of iron crystals. Proceedings of the Royal Society A 112 (1926) 337-361.10.1098/rspa.1926.0116Search in Google Scholar

115. Zappa K.: Constance Tipper Cracks the Case of the Liberty Ships. JOM 67 (2015) 2774-2776.10.1007/s11837-015-1697-9Search in Google Scholar

116. You S., Huang Y., Kainer K.U., Hort N.: Recent research and developments on wrought magnesium alloys Journal of Magnesium and Alloys 5 (2017) 239-253.10.1016/j.jma.2017.09.001Search in Google Scholar

117. Poerschke D.: The Effects of forging on the microstructure and tensile properties of magnesium alloys AZ31 and ZK60. Case Western Reserve University, Cleveland, OH, USA; 2009.Search in Google Scholar

118. Mezger, H.: The Development of the Porsche Type 917 Car. Proceedings of the Institution of Mechanical Engineers, 186 (1972) 11–28.10.1243/PIME_PROC_1972_186_005_02Search in Google Scholar

119. Kalpakjian S., Schmid S. R.: Manufacturing Engineering and Technology. Seventh Edition. 2014. Pearson. Prentice Hall, Upper Saddle River, New Jersey, USA. p. 325.Search in Google Scholar

120. Shimotomai M.: Study of Carbon Steel by Mechanical Spectroscopy beyond the Old Limitations. Res Rep Metals 1 (2017) 1000107.Search in Google Scholar

121. Hug E.: Evolution of the magnetic domain structure of oriented 3% SiFe sheets with plastic strains. J. Mater. Sci. 30 (1995) 4417–4424.10.1007/BF00361526Search in Google Scholar

122. Perevertov O., Thielsch J., Schäfer R.: Effect of applied tensile stress on the hysteresis curve and magnetic domain structure of grain-oriented transverse Fe-3%Si steel. Journal of Magnetism and Magnetic Materials 385 (2015) 358–367.10.1016/j.jmmm.2015.03.040Search in Google Scholar

123. Naumoski H., Riedmüller B., Minkow A., Herr U.: Investigation of the influence of different cutting procedures on the global and local magnetic properties of non-oriented electrical steel. Journal of Magnetism and Magnetic Materials 392 (2015) 126–133.10.1016/j.jmmm.2015.05.031Search in Google Scholar

124. Nakamura M., Hirose K., Nozawa T., Matsuo M.: Domain refinement of grain oriented silicon steel by laser irradiation. IEEE Transactions on Magnetics 23 (1987) 3074 – 3076.10.1109/TMAG.1987.1065748Search in Google Scholar

125. Sablik M. J.: A model for asymmetry in magnetic property behavior under tensile and compressive stress in steel. IEEE Transactions on Magnetics 33 (1997) 3958 – 396010.1109/20.619628Search in Google Scholar

126. Sablik M. J., Jiles D. C.: Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis. IEEE Transactions on Magnetics 29 (1993) 2113 – 2123.10.1109/20.221036Search in Google Scholar

127. Sablik M. J., Rios S., Landgraf F. J. G., Yonamine T., de Campos M. F.: Modeling of sharp change in magnetic hysteresis behavior of electrical steel at small plastic deformation Journal of Applied Physics 97 (2005) 10E518.10.1063/1.1856191Search in Google Scholar

128. Correa S.R., de Campos M.F., Marcelo C.J., de Castro J.A., Fonseca M.C., Chuvas T.C., Campos M.A., Padovese L.R.: Evaluation of Residual Stresses in Welded ASTM A36 Structural Steel by Metal Active Gas (MAG) Welding Process. Materials Science Forum 869 (2016) 567-571.10.4028/www.scientific.net/MSF.869.567Search in Google Scholar

129. Correa S.R., de Campos M.F., Marcelo C.J., de Castro J.A., Fonseca M.C., Chuvas T.C., Campos M.A., Padovese L.R.: Characterization of Residual Stresses and Microstructural by Technique of Magnetic Barkhausen Noise of API 5L X80 Steel Heat Treatment. Materials Science Forum 869 (2016) 556-561.10.4028/www.scientific.net/MSF.869.556Search in Google Scholar

130. de Campos M. F., Damasceno J. C., Machado R., Achete C. A.: Uncertainty Estimation of Lattice Parameters Measured By X-Ray Diffraction. In XVIII IMEKO WORLD CONGRESS Metrology for a Sustainable Development September, 17 – 22, 2006, Rio de Janeiro, Brazil.Search in Google Scholar

131. Eigenmann B., Macherauch E.: Histoire et état actuel de l’analyse des contraintes par rayons X. Journal de Physique IV Colloque, 06 (C4), (1996) pp.C4-151-C4-185.10.1051/jp4:1996416Search in Google Scholar

132. Guillen R., François M., Bourniquel B., Girard E.: Texture and residual-stress analysis using a kappa goniometer. J. Appl. Cryst. 32 (1999) 393-396.10.1107/S0021889898015064Search in Google Scholar

eISSN:
2083-4799
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Materials Sciences, Functional and Smart Materials