Otwarty dostęp

Orbital TIG Welding of Titanium Tubes with Perforated Bottom Made of Titanium-Clad Steel


Zacytuj

1. Vandewynckéle, A, Vaamonde, E, Fontán, M., Herwig, P., Mascioletti, A. (2013). Laser welding head tailored to tube-sheet joint requirements for heat exchangers manufacturing. Physics Procedia, 41, 144-152.10.1016/j.phpro.2013.03.063Search in Google Scholar

2. Varbai, B., Pickle, T., Májlinger, K. (2019). Effect of heat input and role of nitrogen on the phase evolution of 2205 duplex stainless steel weldment. International Journal of Pressure Vessels and Piping, 176, 103952.10.1016/j.ijpvp.2019.103952Search in Google Scholar

3. Sajek, A. (2019). Application of FEM simulation method in area of the dynamics of cooling AHSS steel with a complex hybrid welding process. Welding in the World, 63(4), 1065-1073.10.1007/s40194-019-00718-zSearch in Google Scholar

4. Gietka, T., Ciechacki, K., Kik, T. (2016). Numerical simulation of duplex steel multipass welding. Archives of Metallurgy and Materials, 61, 1975-1983.10.1515/amm-2016-0319Search in Google Scholar

5. Górka, J., Klimpel, A. (1995). A technology for the welding of tubes to perforated clad tube plates. Welding International, 9, 776-780.10.1080/09507119509548894Search in Google Scholar

6. Pańcikiewicz, K., Tuz, L., Zielińska-Lipiec, A. (2014). Zinc contamination cracking in stainless steel after welding. Engineering Failure Analysis, 39, 149-154.10.1016/j.engfailanal.2014.02.013Search in Google Scholar

7. Skowrońska, B., Chmielewski, T., Pachla, W., Kulczyk, M., Skiba, J., Presz, W. (2019). Friction Weldability of UFG 316L stainless steel. Archives of Metallurgy and Materials, 64, 1051-1058.Search in Google Scholar

8. Winczek, J., Gawronska, E., Gucwa, M., Sczygiol, N. (2019). Theoretical and experimental investigation of temperature and phase transformation during SAW overlaying. Applied Sciences, 9(7), 1472.10.3390/app9071472Search in Google Scholar

9. Talkington, J., Harwig, D., Castner. H., Mitchell, G. (2000). Development of titanium weld color inspection tools. Welding Journal, 79(3), 35-38.Search in Google Scholar

10. Margolin. H., Nielsen, J.P. (1960). Titanum Metallurgy – Modern materials advances in development and aplications. New York – London: Academic Press 2, 225 – 325.Search in Google Scholar

11. Shankar, A. R., Sole, R., Thyagarajan, K., George, R. P., Mudali, U. K. (2019). Failure analysis of titanium heater tubes and stainless steel heat exchanger weld joints in nitric acid loop. Engineering Failure Analysis, 99, 248-262.10.1016/j.engfailanal.2019.02.016Search in Google Scholar

12. Lathabai, S., Jarvis. B.L., Barton, K.J. (2001). Comparison of keyhole and conventional gas tungsten arc welds in commercially pure titanium. Materials Science and Engineering A, 299, 81-93.10.1016/S0921-5093(00)01408-8Search in Google Scholar

13. Farrahi, G. H., Chamani, M., Kiyoumarsioskouei, A., Mahmoudi, A. H. (2019). The effect of plugging of tubes on failure of shell and tube heat exchanger. Engineering Failure Analysis, 104, 545-559.10.1016/j.engfailanal.2019.06.034Search in Google Scholar

14. Kumar, K., Masanta, M., Sahoo, S. K. (2019). Microstructure evolution and metallurgical characteristic of bead-on-plate TIG welding of Ti-6Al-4V alloy. Journal of Materials Processing Technology, 265, 34-43.10.1016/j.jmatprotec.2018.10.002Search in Google Scholar

15. Khorshidi, J., Heidari, S. Design and construction of a spiral heat exchanger. Advances in Chemical Engineering and Science, 6, 1-8.Search in Google Scholar

16. Tomków, J., Fydrych, D., Rogalski G., Łabanowski J. (2019). Effect of the welding environment and storage time of electrodes on the diffusible hydrogen content in deposited metal. Revista de Metalurgia, 55, e140.Search in Google Scholar

17. Prabhat, K., Aravinda, P. (2014). An overview of welding aspects and challenges during manufacture of intermediate heat exchangers for 500MWe prototype fast breeder reactor. Procedia Engineering, 86, 173 – 183.10.1016/j.proeng.2014.11.026Search in Google Scholar

18. Leonov, V.P., Mikhailov, V.I., Yu, I. (2016). Welding of high-strength titanium alloys of large thicknesses for use in marine environments. Inorganic Materials: Applied Reaserch, 7, 877-883.10.1134/S2075113316060083Search in Google Scholar

19. Lothongkum, G., Chaumbai, P., Bhandhubanyong P. (1990). TIG pulse welding of 304L austenitic stainless steel in flat, vertical and overhead positions. Journal of Materials Processing Technology, 89-90, 410-414.Search in Google Scholar

20. Lisiecki, A. (2016). Effect of heat input during disk laser bead-on-plate welding of thermomechanically rolled steel on penetration characteristics and porosity formation in the weld metal. Archives of Metallurgy and Materials, 61, 93–102.10.1515/amm-2016-0019Search in Google Scholar

21. Benway, A. (2000). Advancements in automatic orbital welding expand its use, provide welders with more option. Industrial Maintenance & Plant Operation, 61, 22.Search in Google Scholar

22. Kosturek, R., Wachowski, M., Śnieżek, L., Gloc, M. (2019). The influence of the post-weld heat treatment on the microstructure of Inconel 625/carbon steel bimetal joint obtained by explosive welding. Metals, 9(2), 246.10.3390/met9020246Search in Google Scholar

eISSN:
2083-4799
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Materials Sciences, Functional and Smart Materials