Otwarty dostęp

In vitro antioxidant and antityrosinase activities of Manilkara kauki


Zacytuj

1. J. L. Rees, The genetics of human pigmentary disorders, J. Invest. Dermatol. 131 (2011) E12-E13; https://doi.org/10.1038/skinbio.2011.510.1038/skinbio.2011.522094399Search in Google Scholar

2. V. J. Hearing, Determination of melanin synthetic pathways, J. Invest. Dermatol. 131 (2011) E8-E11; https://doi.org/10.1038/skinbio.2011.410.1038/skinbio.2011.4694420922094404Search in Google Scholar

3. C. Couteau and L. Coiffard, Overview of skin whitening agents: drugs and cosmetic products, Cosmetics3 (2016) 27–43; https://doi.org/10.3390/cosmetics303002710.3390/cosmetics3030027Search in Google Scholar

4. J. F. Hsieh, S. T. Chen and S. L. Cheng, Molecular Profiling of A375 Human Malignant Melanoma Cells Treated with Kojic Acid and Arbutin, Breakthroughs in Melanoma Research, in Breakthroughs in Melanoma Research (Ed. Y. Tanaka), InTech, Shanghai 2011, pp. 533–558.10.5772/20019Search in Google Scholar

5. S. L. Cheng, R. H. Liu, J. N. Sheu, S. T. Chen, S. Sinchaikul and G. J. Tsay, Toxicogenomics of kojic acid on gene expression profiling of A375 human malignant melanoma cells, Biol. Pharm. Bull. 29 (2006) 655–669; https://doi.org/10.1248/bpb.29.65510.1248/bpb.29.65516595896Search in Google Scholar

6. T. Pillaiyar, V. Namasivayam, M. Manickam and S. H. Jung, Inhibitors of melanogenesis: an updated review, J. Med. Chem. 61 (2018) 7395–7418; https://doi.org/10.1021/acs.jmedchem.7b0096710.1021/acs.jmedchem.7b0096729763564Search in Google Scholar

7. P. K. Mukherjee, R. Biswas, A. Sharma, S. Banerjee, S. Biswas and C. K. Katiyar, Validation of medicinal herbs for anti-tyrosinase potential, J. Herb. Med. 14 (2018) 1–16; https://doi.org/10.1016/j.hermed.2018.09.00210.1016/j.hermed.2018.09.002Search in Google Scholar

8. T. K. Lim, Edible Medicinal and Non-Medicinal Plants, Vol. 6. Fruits, Springer, Dordrecht 2013, pp. 107–109.Search in Google Scholar

9. C. P. Khare, Indian Medicinal Plants: An Illustrated Dictionary, Springer Verlag, New York 2007, pp. 397–398.10.1007/978-0-387-70638-2Search in Google Scholar

10. E. A. Ainsworth and K. M. Gillespie, Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent, Nat. Protoc. 2 (2007) 875–877; https://doi.org/10.1038/nprot.2007.10210.1038/nprot.2007.10217446889Search in Google Scholar

11. B. Tohidi, M. Rahimmalek and A. Arzani, Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran, Food Chem. 220 (2017) 153–161; https://doi.org/10.1016/j.foodchem.2016.09.20310.1016/j.foodchem.2016.09.20327855883Search in Google Scholar

12. K. Thaipong, U. Boonprakob, K. Crosby, L. Cisneros-Zevallos and D. H. Byrne, Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts, J. Food Comp. Anal. 19 (2006) 669–675; https://doi.org/10.1016/j.jfca.2006.01.00310.1016/j.jfca.2006.01.003Search in Google Scholar

13. I. F. F. Benzie and J. J. Strain, The ferric reducing ability of plasma (FRAP) as a measure of “Anti-oxidant power”: The FRAP assay, Anal. Biochem. 239 (1996) 70–76; https://doi.org/10.1006/abio.1996.029210.1006/abio.1996.02928660627Search in Google Scholar

14. A. Ishihara, Y. Ide, T. Bito, N. Ube, N. Endo, K. Sotome, N. Maekawa, K. Ueno and A. Nakagiri, Novel tyrosinase inhibitors from liquid culture of Neolentinus lepideus, Biosci. Biotechnol. Biochem. 82 (2018) 22–30; https://doi.org/10.1080/09168451.2017.141512510.1080/09168451.2017.141512529297258Search in Google Scholar

15. V. Kothari, S. Pathan and S. Seshadri, Antioxidant activity of Manilkara zapota and Citrus limon seeds, J. Nat. Remedies10 (2010) 175–180; https://doi.org/10.18311/jnr/2010/259Search in Google Scholar

16. M. A. Osman, M. A. Aziz, M. R. Habib and M. R. Karim, Antimicrobial investigation on Manil kara zapota (L.) P. Royen, Int. J. Drug Dev. Res. 3 (2011) 185–190.Search in Google Scholar

17. K. J. Pankaj, S. Prashant, U. Neeraj and S. Yogesh, Evaluation of analgesic activity of Manilkara zapota (leaves), Eur. J. Exp. Biol. 1 (2011) 14–17.Search in Google Scholar

18. N. M. Fayek, A. R. A. Monem, M. Y. Mossa, M. R. Meselhy and A. H. Shazly, Chemical and biological study of Manilkara zapota (L.) Van Royen leaves (Sapotaceae) cultivated in Egypt, Pharmacogn. Res. 4 (2012) 85–91; https://doi.org/10.4103/0974-8490.9472310.4103/0974-8490.94723332676222518080Search in Google Scholar

19. N. M. Fayek, A. R. A. Monem, M. Y. Mossa and M. R. Meselhy, New triterpenoid acyl derivatives and biological study of Manilkara zapota (L.) Van Royen fruits, Pharmacogn. Res. 5 (2013) 55–59; https://doi.org/10.4103/0974-8490.11050510.4103/0974-8490.110505368576423798877Search in Google Scholar

20. F. B. de Almeida, C. P. Fernandes, W. Romao, G. Vanini, H. B. Costa, H. S. Franca, M. G. Santos, J. C. T. Carvalho, D. Q. Falcao and L. Rocha, Secondary metabolites from leaves of Manilkara subsericea (Mart.) Dubard, Pharmacogn. Mag. 11 (2015) S533–S537; https://doi.org/10.4103/0973-1296.17295710.4103/0973-1296.172957478708427013790Search in Google Scholar

21. M. H. Baky, A. M. Kamal, M. R. Elgindi and E. G. Haggag, A review on phenolic compounds from family Sapotaceae, J. Pharmacogn. Phytochem. 5 (2016) 280–287.Search in Google Scholar

22. A. Ghasemzadeh and N. Ghasemzadeh, Flavonoids and phenolic acids: role and biochemical activity in plants and human, J. Med. Plants Res. 5 (2011) 6697–6703; https://doi.org/10.5897/JMPR11.140410.5897/JMPR11.1404Search in Google Scholar

23. S. Kumar and A. K. Pandey, Chemistry and biological activities of flavonoids: an overview, Sci. World J. 2013 (2013) 162750; https://doi.org/10.1155/2013/16275010.1155/2013/162750389154324470791Search in Google Scholar

24. H. S. Baek, H. S. Rho, J. W. Yoo, S. M. Ahn, J. Lee, M. K. Kim, D. H. Kim and I. S. Chang, The inhibitory effect of new hydroxamic acid derivatives on melanogenesis, Bull. Korean Chem. Soc. 29 (2008) 43–46; https://doi.org/10.5012/bkcs.2008.29.1.04310.5012/bkcs.2008.29.1.043Search in Google Scholar

25. I. Corradi, E. de Souza, D. Sande and J. A. Takahashi, Correlation between phenolic compounds contents, antityrosinase and antioxidant activities of plant extracts, Chem. Eng. Trans. 64 (2018) 109–114; https://doi.org/10.3303/CET1864019Search in Google Scholar

26. G. S. Jimenez, C. R. Aquino, L. C. Martinez, K. B. Torres and M. R. Monroy, Antioxidant activity and content of phenolic compounds and flavonoids from Justicia spicigera, J. Biol. Sci. 9 (2009) 629–632; https://doi.org/10.3923/jbs.2009.629.63210.3923/jbs.2009.629.632Search in Google Scholar

27. A. A. Elzaawely and S. Tawata, Antioxidant activity of phenolic rich fraction obtained from Convolvulus arvensis L. leaves grown in Egypt, Asian J. Crop. Sci. 4 (2012) 32–40; https://doi.org/10.3923/ajcs.2012.32.4010.3923/ajcs.2012.32.40Search in Google Scholar

28. A. Ghasemzadeh, H. Z. E. Jaafar and A. Rahmat, Effects of solvent type on phenolics and flavonoids content and antioxidant activities in two varieties of young ginger (Zingiber officinale Roscoe) extracts, J. Med. Plants Res. 5 (2011) 1147–1154.Search in Google Scholar

29. L. Tomsone, Z. Kruma and R. Galoburda, Comparison of different solvents and extraction methods for isolation of phenolic compounds from horseradish roots (Armoracia rusticana), Int. Sch. Sci. Res. Innov. 6 (2012) 236–241; https://doi.org/10.5281/zenodo.1071162Search in Google Scholar

30. S. B. Iloki-Assanga, L. M. Lewis-Luján, C. L. Lara-Espinoza, A. A. Gil-Salido, D. Fernandez-Angulo, J. L. Rubio-Pino and D. D. Haines, Solvent effects on phytochemical constituent profiles and antioxidant activities, using four different extraction formulations for analysis of Bucida buceras L. and Phoradendron californicum, BMC Res. Notes8 (2015) 396–409; https://doi.org/10.1186/s13104-015-1388-110.1186/s13104-015-1388-1455392426323940Search in Google Scholar

eISSN:
1846-9558
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Pharmacy, other