Otwarty dostęp

Pyrrolizine-5-carboxamides: Exploring the impact of various substituents on anti-inflammatory and anticancer activities


Zacytuj

1. E. R. Rayburn, S. J. Ezell and R. Zhang, Anti-inflammatory agents for cancer therapy, Mol. Cell. Pharmacol.1 (2009) 29–43; https://doi.org/10.4255/mcpharmacol.09.0510.4255/mcpharmacol.09.05284309720333321Search in Google Scholar

2. M. J. Thun, S. J. Henley and C. Patrono, Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues, J. Natl. Cancer Inst.94 (2002) 252–266; https://doi.org/10.1093/jnci/94.4.25210.1093/jnci/94.4.25211854387Search in Google Scholar

3. S. R. Pedada, N. S. Yarla, P. J. Tambade, B. L. Dhananjaya, A. Bishayee, K. M. Arunasree, G. H. Philip, G. Dharmapuri, G. Aliev, S. Putta and G. Rangaiah, Synthesis of new secretory phospholipase A2-inhibitory indole containing isoxazole derivatives as anti-inflammatory and anticancer agents, Eur. J. Med. Chem.112 (2016) 289–297; https://doi.org/10.1016/j.ejmech.2016.02.02510.1016/j.ejmech.2016.02.02526907155Search in Google Scholar

4. C. Sobolewski, C. Cerella, M. Dicato, L. Ghibelli and M. Diederich, The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies, Int. J. Cell Biol.2010 (2010) 1–21; https://doi.org/10.1155/2010/21515810.1155/2010/215158284124620339581Search in Google Scholar

5. C. S. Williams, M. Mann and R. N. DuBois, The role of cyclooxygenases in inflammation, cancer, and development, Oncogene18 (1999) 7908–7916; https://doi.org/10.1038/sj.onc.120328610.1038/sj.onc.120328610630643Search in Google Scholar

6. C. Ruegg, J. Zaric and R. Stupp, Non-steroidal anti-inflammatory drugs and COX-2 inhibitors as anti-cancer therapeutics: hypes, hopes and reality, Ann. Med.35 (2003) 476–487; https://doi.org/10.1080/0785389031001705310.1080/0785389031001705314649330Search in Google Scholar

7. A. T. Koki and J. L. Masferrer, Celecoxib: a specific COX-2 inhibitor with anticancer properties, Cancer Control9 (2002) 28–35; https://doi.org/10.1177/107327480200902S0410.1177/107327480200902S0411965228Search in Google Scholar

8. A. M. Gouda and A. H. Abdelazeem, An integrated overview on pyrrolizines as potential anti-inflammatory, analgesic and antipyretic agents, Eur. J. Med. Chem.114 (2016) 257–292; https://doi.org/10.1016/j.ejmech.2016.01.05510.1016/j.ejmech.2016.01.05526994693Search in Google Scholar

9. A. M. Gouda, A. H. Abdelazeem, H. A. Omar, A. N. Abdalla, M. A. S. Abourehab and H. I. Ali, Pyrrolizines: design, synthesis, anticancer evaluation and investigation of the potential mechanism of action, Bioorg. Med. Chem. 25 (2017) 5637–5651; https://doi.org/10.1016/j.bmc.2017.08.039 (in press)10.1016/j.bmc.2017.08.03928916158Search in Google Scholar

10. A. M. Gouda, H. I. Ali, W. H. Almalki, M. A. Azim, M. A. S. Abourehab and A. H. Abdelazeem, Design, synthesis, and biological evaluation of some novel pyrrolizine derivatives as COX inhibitors with anti-inflammatory/analgesic activities and low ulcerogenic liability, Molecules21 (2016) 1–21; https://doi.org/10.3390/molecules2102020110.3390/molecules21020201627396326867188Search in Google Scholar

11. J.-P. Raynauld, J. Martel-Pelletier, P. Bias, S. Laufer, B. Haraoui, D. Choquette, A. D. Beaulieu, F. Abram, M. Dorais, E. Vignon and J.-P. Pelletier, Protective effects of licofelone, a 5-lipoxygenase and cyclo-oxygenase inhibitor, versus naproxen on cartilage loss in knee osteoarthritis: a first multicentre clinical trial using quantitative MRI, Ann. Rheum. Dis.68 (2009) 938–947; https://doi.org/10.1136/ard.2008.08873210.1136/ard.2008.088732Search in Google Scholar

12. W. Liu, J. Zhou, K. Bensdorf, H. Zhang, H. Liu, Y. Wang, H. Qian, Y. Zhang, A. Wellner, G. Rubner, W. Huang, C. Guo and R. Gust, Investigations on cytotoxicity and anti-inflammatory potency of licofelone derivatives, Eur. J. Med. Chem.46 (2011) 907–913; https://doi.org/10.1016/j.ejmech.2011.01.00210.1016/j.ejmech.2011.01.002Search in Google Scholar

13. S. Tavolari, M. Bonafe, M. Marini, C. Ferreri, G. Bartolini, E. Brighenti, S. Manara, V. Tomasi, S. Laufer and T. Guarnieri, Licofelone, a dual COX/5-LOX inhibitor, induces apoptosis in HCA-7 colon cancer cells through the mitochondrial pathway independently from its ability to affect the arachidonic acid cascade, Carcinogenesis29 (2008) 371–380; https://doi.org/10.1093/carcin/bgm26510.1093/carcin/bgm265Search in Google Scholar

14. S. Tavolari, A. Munarini, G. Storci, S. Laufer, P. Chieco and T. Guarnieri, The decrease of cell membrane fluidity by the non-steroidal anti-inflammatory drug Licofelone inhibits epidermal growth factor receptor signalling and triggers apoptosis in HCA-7 colon cancer cells, Cancer Lett.321 (2012) 187–194; https://doi.org/10.1016/j.canlet.2012.02.00310.1016/j.canlet.2012.02.003Search in Google Scholar

15. V. Lisowski, C. Enguehard, J. Lancelot, D. Caignard, S. Lambel, S. Leonce, A. Pierre, G. Atassi, P. Renard and S. Rault, Design, synthesis and antiproliferative activity of tripentones: a new series of antitubulin agents, Bioorg. Med. Chem. Lett.11 (2001) 2205–2208; https://doi.org/10.1016/S0960-894X(01)00403-610.1016/S0960-894X(01)00403-6Search in Google Scholar

16. V. Lisowski, S. Leonce, L. Kraus-Berthier, J. Sopkova-de Oliveira Santos, A. Pierre, G. Atassi, D.-H. Caignard, P. Renard and S. Rault, Design, synthesis, and evaluation of novel thienopyrrolizinones as antitubulin agents, J. Med. Chem.47 (2004) 1448–1464; https://doi.org/10.1021/jm030961z10.1021/jm030961z14998333Search in Google Scholar

17. C. Rochais, T. Cresteil, V. Perri, M. Jouanne, A. Lesnard, S. Rault and P. Dallemagne, MR22388, a novel anti-cancer agent with a strong FLT-3 ITD kinase affinity, Cancer Lett.331 (2013) 92–98; https://doi.org/10.1016/j.canlet.2012.12.01710.1016/j.canlet.2012.12.01723268332Search in Google Scholar

18. A. M. Gouda, A. H. Abdelazeem, E.-S. A. Arafa and K. R. A. Abdellatif, Design, synthesis and pharmacological evaluation of novel pyrrolizine derivatives as potential anticancer agents, Bioorg. Chem.53 (2014) 1–7; https://doi.org/10.1016/j.bioorg.2014.01.00110.1016/j.bioorg.2014.01.00124462996Search in Google Scholar

19. A. Etienne and Y. Correia, Derivatives of 2-pyrrolidone, Bull. Soc. Chem.10 (1969) 3704–3712.Search in Google Scholar

20. W. A. Jacobs and M. Heidelberger, The ferrous sulfate and ammonia method for the reduction of nitro to amino compounds, J. Am. Chem. Soc.39 (1917) 1435–1439; https://doi.org/10.1021/ja02252a01710.1021/ja02252a017Search in Google Scholar

21. M. Y. Ebeid, S. M. El-Moghazy, M. M. Hanna, F. A. Romeih and F. F. Barsoum, Synthesis and anti-HIV activity of some 6,7-dihydro-5H-pyrrolizine-3-carboxamide, 5,6,7,8-tetrahydroindolizine-3-carboxamide, 1-thioxo-1,2,3,5,6,7,8,9,10,11-decahydro-pyrimido-[1,6-a]azonine-4-carbonitrile and 6-thioxo-1,2,5,6,8,9,10,11,12,13,14,14a-dodecahydro-pyrimido[4ʹ,5ʹ:4,5]pyrimido-[1,6-a]azonine-1-one derivatives, Bull. Fac. Pharm. Cairo Univ.35 (1997) 171–183.Search in Google Scholar

22. C. A. Winter, E. A. Risley and G. W. Nuss, Carrageenan induced edema in hind paw of the rats as an assay for anti-inflammatory drugs, Proc. Soc. Exp. Biol. Med.111 (1962) 544–547; https://doi.org/10.3181/00379727-111-2784910.3181/00379727-111-2784914001233Search in Google Scholar

23. A. Mollica, R. Costante, A. Stefanucci, F. Pinnen, G. Lucente, S. Fidanza and S. Pieretti, Novel cyclic biphalin analogue with improved antinociceptive properties, J. Pept. Sci.19 (2013) 233–239; https://pubs.acs.org/doi/10.1021/ml500241n10.1002/psc.2465Search in Google Scholar

24. N. Handler, W. Jaeger, H. Puschacher, K. Leisser and T. Erker, Synthesis of novel curcumin analogues and their evaluation as selective cyclooxygenase-1 (COX-1) inhibitors, Chem. Pharm. Bull. (Tokyo) 55 (2007) 64–71; https://doi.org/10.1248/cpb.55.6410.1248/cpb.55.64Search in Google Scholar

25. E.-S. A. Arafa, A. H. Abdelazeem, H. H. Arab and H. A. Omar, OSU-CG5, a novel energy restriction mimetic agent, targets human colorectal cancer cells in vitro, Acta Pharmacol. Sin.35 (2014) 394–400; https://doi.org/10.1038/aps.2013.18310.1038/aps.2013.183Search in Google Scholar

26. I. Vermes, C. Haanen, H. Steffens-Nakken and C. Reutellingsperger, A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V, J. Immunol. Methods184 (1995) 39–51; https://doi.org/10.1016/0022-1759(95)00072-I10.1016/0022-1759(95)00072-ISearch in Google Scholar

27. C. A. Lipinski, F. Lombardo, B. W. Dominy and P. J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv.Rev.23 (1997) 3–25; https://doi.org/10.1016/S0169-409X(96)00423-110.1016/S0169-409X(96)00423-1Search in Google Scholar

28. A. Daina, O. Michielin and V. Zoete, SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep.7 (2017) Article ID 42717; https://doi.org/10.1038/srep4271710.1038/srep42717533560028256516Search in Google Scholar

29. B. S. Selinsky, K. Gupta, C. T. Sharkey and P. J. Loll, Structural analysis of NSAID binding by prostaglandin H2 synthase: time-dependent and time-independent inhibitors elicit identical enzyme conformations, Biochemistry40 (2001) 5172–5180; https://doi.org/10.1021/bi010045s10.1021/bi010045s11318639Search in Google Scholar

30. R. G. Kurumbail, A. M. Stevens, J. K. Gierse, J. J. McDonald, R. A. Stegeman, J. Y. Pak, D. Gildehaus, J. M. Miyashiro, T. D. Penning, K. Seibert, P. C. Isakson and W. C. Stallings, Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents, Nature384 (1996) 644–648; https://doi.org/10.1038/384644a010.1038/384644a08967954Search in Google Scholar

eISSN:
1846-9558
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Pharmacy, other