Otwarty dostęp

Gamma-enolase: a well-known tumour marker, with a less-known role in cancer


Zacytuj

1. Pancholi V. Multifunctional alpha-enolase: its role in diseases. Cell Mol Life Sci 2001; 58: 902-20.10.1007/PL00000910Search in Google Scholar

2. Kim JW, Dang CV. Multifaceted roles of glycolytic enzymes. Trends Biochem Sci 2005; 30: 142-50.10.1016/j.tibs.2005.01.005Search in Google Scholar

3. Masoudi-Nejad A, Asgari Y. Metabolic cancer biology: Structural-based analysis of cancer as a metabolic disease, new sights and opportunities for disease treatment. Semin Cancer Biol 2015; 30: 21-9.10.1016/j.semcancer.2014.01.007Search in Google Scholar

4. Dang CV, Semenza GL. Oncogenic alterations of metabolism. Trends Biochem Sci 1999; 24: 68-72.10.1016/S0968-0004(98)01344-9Search in Google Scholar

5. McAlister L, Holland MJ. Targeted deletion of a yeast enolase structural gene. Identification and isolation of yeast enolase isozymes. J Biol Chem 1982; 257: 7181-8.10.1016/S0021-9258(18)34554-XSearch in Google Scholar

6. Diaz-Ramos A, Roig-Borrellas A, Garcia-Melero A, Lopez-Alemany R. Alpha-enolase, a multifunctional protein: its role on pathophysiological situations. J Biomed Biotechnol 2012; 2012: 156795.10.1155/2012/156795Search in Google Scholar

7. Hattori T, Takei N, Mizuno Y, Kato K, Kohsaka S. Neurotrophic and neuro-protective effects of neuron-specific enolase on cultured neurons from embryonic rat brain. Neurosci Res 1995; 21: 191-8.10.1016/0168-0102(94)00849-BSearch in Google Scholar

8. Suresh MR. Cancer Markers. In: Wild D, editor. The immunoassay handbook. Third edition. Oxford, UK: Elsevier; 2005. p. 664-94.Search in Google Scholar

9. Marangos PJ, Parma AM, Goodwin FK. Functional properties of neuronal and glial isoenzymes of brain enolase. J Neurochem 1978; 31: 727-32.10.1111/j.1471-4159.1978.tb07847.xSearch in Google Scholar

10. Fletcher L, Rider CC, Taylor CB. Enolase isoenzymes: III. Chromatographic and immunological characteristics of rat brain enolase. Biochim Biophys Acta 1976; 452: 245-52.10.1016/0005-2744(76)90077-2Search in Google Scholar

11. Giallongo A, Feo S, Moore R, Croce CM, Showe LC. Molecular cloning and nucleotide sequence of a full-length cDNA for human alpha enolase. Proc Natl Acad Sci U S A 1986; 83: 6741-5.10.1073/pnas.83.18.67413865853529090Search in Google Scholar

12. Feo S, Oliva D, Barbieri G, Xu WM, Fried M, Giallongo A. The gene for the muscle-specific enolase is on the short arm of human chromosome 17. Genomics 1990; 6: 192-4.10.1016/0888-7543(90)90467-9Search in Google Scholar

13. Lebioda L, Stec B. Mapping of isozymic differences in enolase. Int J Biol Macromol 1991; 13: 97-100.10.1016/0141-8130(91)90055-YSearch in Google Scholar

14. Faller LD, Johnson AM. Calorimetric studies of the role of magnesium ions in yeast enolase catalysis. Proc Natl Acad Sci U S A 1974; 71: 1083-7.10.1073/pnas.71.4.1083Search in Google Scholar

15. Brewer JM. Specificity and mechanism of action of metal ions in yeast enolase. FEBS Letters 1985; 182: 8-14.10.1016/0014-5793(85)81143-1Search in Google Scholar

16. Vallee BL. Zinc and metalloenzymes. Adv Protein Chem 1955; 10: 317-84.10.1016/S0065-3233(08)60108-4Search in Google Scholar

17. Faller LD, Baroudy BM, Johnson AM, Ewall RX. Magnesium ion requirements for yeast enolase activity. Biochemistry 1977; 16: 3864-9.10.1021/bi00636a023Search in Google Scholar

18. Brewer JM. Yeast enolase: mechanism of activation by metal ions. CRC Crit Rev Biochem 1981; 11: 209-54.10.3109/10409238109108702Search in Google Scholar

19. Brewer JM, Ellis PD. 31P-nmr studies of the effect of various metals on substrate binding to yeast enolase. J Inorg Biochem 1983; 18: 71-82.10.1016/0162-0134(83)85041-7Search in Google Scholar

20. Ko-Jiunn L, Neng-Yao S. The role of enolase in tissue invasion and metastasis of pathogens and tumor cells. J Cancer Mol 2007; 3: 45-8.Search in Google Scholar

21. Ghosh AK, Steele R, Ray RB. Functional domains of c-myc promoter binding protein 1 involved in transcriptional repression and cell growth regulation. Mol Cell Biol 1999; 19: 2880-6.10.1128/MCB.19.4.2880Search in Google Scholar

22. Feo S, Arcuri D, Piddini E, Passantino R, Giallongo A. ENO1 gene product binds to the c-myc promoter and acts as a transcriptional repressor: relationship with Myc promoter-binding protein 1 (MBP-1). FEBS Lett 2000; 473: 47-52.10.1016/S0014-5793(00)01494-0Search in Google Scholar

23. Capello M, Ferri-Borgogno S, Cappello P, Novelli F. Alpha-Enolase: a promising therapeutic and diagnostic tumor target. FEBS J 2011; 278: 1064-74.10.1111/j.1742-4658.2011.08025.xSearch in Google Scholar

24. Mears R, Craven RA, Hanrahan S, Totty N, Upton C, Young SL, et al. Proteomic analysis of melanoma-derived exosomes by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Proteomics 2004; 4: 4019-31.10.1002/pmic.200400876Search in Google Scholar

25. Yu X, Harris SL, Levine AJ. The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res 2006; 66: 4795-801.10.1158/0008-5472.CAN-05-4579Search in Google Scholar

26. Cappello P, Tomaino B, Chiarle R, Ceruti P, Novarino A, Castagnoli C, et al. An integrated humoral and cellular response is elicited in pancreatic cancer by alpha-enolase, a novel pancreatic ductal adenocarcinoma-associated antigen. Int J Cancer 2009; 125: 639-48.10.1002/ijc.24355Search in Google Scholar

27. He P, Naka T, Serada S, Fujimoto M, Tanaka T, Hashimoto S, et al. Proteomics-based identification of alpha-enolase as a tumor antigen in non-small lung cancer. Cancer Sci 2007; 98: 1234-40.10.1111/j.1349-7006.2007.00509.xSearch in Google Scholar

28. Seweryn E, Pietkiewicz J, Bednarz-Misa IS, Ceremuga I, Saczko J, Kulbacka J, et al. Localization of enolase in the subfractions of a breast cancer cell line. Z Naturforsch C 2009; 64: 754-8.10.1515/znc-2009-9-1023Search in Google Scholar

29. Nakajima K, Hamanoue M, Takemoto N, Hattori T, Kato K, Kohsaka S. Plasminogen binds specifically to alpha-enolase on rat neuronal plasma membrane. J Neurochem 1994; 63: 2048-57.10.1046/j.1471-4159.1994.63062048.xSearch in Google Scholar

30. Miles LA, Dahlberg CM, Plescia J, Felez J, Kato K, Plow EF. Role of cell-surface lysines in plasminogen binding to cells: identification of .alpha.-enolase as a candidate plasminogen receptor. Biochemistry 1991; 30: 1682-91.10.1021/bi00220a034Search in Google Scholar

31. Dudani AK, Cummings C, Hashemi S, Ganz PR. Isolation of a novel 45 kDa plasminogen receptor from human endothelial cells. Thromb Res 1993; 69: 185-96.10.1016/0049-3848(93)90044-OSearch in Google Scholar

32. Redlitz A, Fowler BJ, Plow EF, Miles LA. The role of an enolase-related molecule in plasminogen binding to cells. Eur J Biochem 1995; 227: 407-15.10.1111/j.1432-1033.1995.tb20403.x7851415Search in Google Scholar

33. Merkulova T, Lucas M, Jabet C, Lamandé N, Rouzeau JD, Gros F, et al. Biochemical characterization of the mouse muscle-specific enolase: developmental changes in electrophoretic variants and selective binding to other proteins. Biochem J 1997; 323: 791-800.10.1042/bj3230791Search in Google Scholar

34. Keller A, Demeurie J, Merkulova T, Geraud G, Cywiner-Golenzer C, Lucas M, et al. Fibre-type distribution and subcellular localisation of alpha and beta enolase in mouse striated muscle. Biol Cell 2000; 92: 527-35.10.1016/S0248-4900(00)01103-5Search in Google Scholar

35. Merkulova T, Dehaupas M, Nevers MC, Créminon C, Alameddine H, Keller A. Differential modulation of alpha, beta and gamma enolase isoforms in regenerating mouse skeletal muscle. Eur J Biochem 2000; 267: 3735-43.10.1046/j.1432-1327.2000.01408.xSearch in Google Scholar

36. Royds JA, Variend S, Timperley WR, Taylor CB. An investigation of beta enolase as a histological marker of rhabdomyosarcoma. J Clin Pathol 1984; 37: 905-10.10.1136/jcp.37.8.905Search in Google Scholar

37. Royds JA, Variend S, Timperley WR, Taylor CB. Comparison of beta enolase and myoglobin as histological markers of rhabdomyosarcoma. J Clin Pathol 1985; 38: 1258-60.10.1136/jcp.38.11.1258Search in Google Scholar

38. Tiainen M, Roine RO, Pettila V, Takkunen O. Serum neuron-specific enolase and S-100B protein in cardiac arrest patients treated with hypothermia. Stroke 2003; 34: 2881-6.10.1161/01.STR.0000103320.90706.35Search in Google Scholar

39. Lamerz R. NSE (neuron-specific enolase) γ-enolase. In: Thomas L, editor. Clinical laboratory diagnostics: use and assessment of clinical laboratory results. 1st. edition. Frankfurt/Main, Germany: TH-Books Verlagsgesellschaft; 1998. p. 979-81.Search in Google Scholar

40. Soh MA, Garrett SH, Somji S, Dunlevy JR, Zhou XD, Sens MA, et al. Arsenic, cadmium and neuron specific enolase (ENO2, γ-enolase) expression in breast cancer. Cancer Cell Int 2011; 11: 41.10.1186/1475-2867-11-41Search in Google Scholar

41. Haimoto H, Takahashi Y, Koshikawa T, Nagura H, Kato K. Immunohistochemical localization of gamma-enolase in normal human tissues other than nervous and neuroendocrine tissues. Lab Invest 1985; 52: 257-63.Search in Google Scholar

42. Vinores SA, Herman MM, Rubinstein LJ. Electron-immunocytochemical localization of neuron-specific enolase in cytoplasm and on membranes of primary and metastatic cerebral tumours and on glial filaments of glioma cells. Histopathology 1986; 10: 891-908.10.1111/j.1365-2559.1986.tb02588.xSearch in Google Scholar

43. Hafner A, Obermajer N, Kos J. gamma-1-syntrophin mediates trafficking of gamma-enolase towards the plasma membrane and enhances its neurotrophic activity. Neurosignals 2010; 18: 246-58.10.1159/000324292Search in Google Scholar

44. Burack WR, Shaw AS. Signal transduction: hanging on a scaffold. Curr Opin Cell Biol 2000; 12: 211-6.10.1016/S0955-0674(99)00078-2Search in Google Scholar

45. Ponting CP, Phillips C, Davies KE, Blake DJ. PDZ domains: targeting signalling molecules to sub-membranous sites. Bioessays 1997; 19: 469-79.10.1002/bies.9501906069204764Search in Google Scholar

46. Obermajer N, Doljak B, Jamnik P, Fonovic UP, Kos J. Cathepsin X cleaves the C-terminal dipeptide of alpha- and gamma-enolase and impairs survival and neuritogenesis of neuronal cells. Int J Biochem Cell Biol 2009; 41: 1685-96.10.1016/j.biocel.2009.02.01919433310Search in Google Scholar

47. McAleese SM, Dunbar B, Fothergill JE, Hinks LJ, Day IN. Complete amino acid sequence of the neurone-specific gamma isozyme of enolase (NSE) from human brain and comparison with the non-neuronal alpha form (NNE). Eur J Biochem 1988; 178: 413-7.10.1111/j.1432-1033.1988.tb14465.x3208766Search in Google Scholar

48. Butterfield DA, Lange ML. Multifunctional roles of enolase in Alzheimer’s disease brain: beyond altered glucose metabolism. J Neurochem 2009; 111: 915-33.10.1111/j.1471-4159.2009.06397.x445433819780894Search in Google Scholar

49. Soh M, Dunlevy JR, Garrett SH, Allen C, Sens DA, Zhou XD, et al. Increased neuron specific enolase expression by urothelial cells exposed to or malignantly transformed by exposure to Cd2+ or As3+. Toxicol Lett 2012; 212: 66-74.10.1016/j.toxlet.2012.05.003339075522613180Search in Google Scholar

50. Yan T, Skaftnesmo KO, Leiss L, Sleire L, Wang J, Li X, et al. Neuronal markers are expressed in human gliomas and NSE knockdown sensitizes glioblastoma cells to radiotherapy and temozolomide. BMC Cancer 2011; 11: 524.10.1186/1471-2407-11-524325911722185371Search in Google Scholar

51. Loja T, Chlapek P, Kuglik P, Pesakova M, Oltova A, Cejpek P, et al. Characterization of a GM7 glioblastoma cell line showing CD133 positivity and both cytoplasmic and nuclear localization of nestin. Oncol Rep 2009; 21: 119-27.Search in Google Scholar

52. Splinter TA, Verkoelen CF, Vlastuin M, Kok TC, Rijksen G, Haglid KG, et al. Distinction of two different classes of small-cell lung cancer cell lines by enzymatically inactive neuron-specific enolase. Br J Cancer 1992; 66: 1065-9.10.1038/bjc.1992.41119780331333786Search in Google Scholar

53. Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 2008; 13: 472-82.10.1016/j.ccr.2008.05.00518538731Search in Google Scholar

54. Vesselle H, Schmidt RA, Pugsley JM, Li M, Kohlmyer SG, Vallires E, et al. Lung cancer proliferation correlates with [F-18]fluorodeoxyglucose uptake by positron emission tomography. Clin Cancer Res 2000; 6: 3837-44.Search in Google Scholar

55. Porporato PE, Dhup S, Dadhich RK, Copetti T, Sonveaux P. Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review. Front Pharmacol 2011; 2: 49.10.3389/fphar.2011.00049316124421904528Search in Google Scholar

56. Golpour M, Akhavan Niaki H, Khorasani HR, Hajian A, Mehrasa R, Mostafazadeh A. Human fibroblast switches to anaerobic metabolic pathway in response to serum starvation: a mimic of warburg effect. Int J Mol Cell Med 2014; 3: 74-80.Search in Google Scholar

57. Wu C-A, Chao Y, Shiah S-G, Lin W-W. Nutrient deprivation induces the Warburg effect through ROS/AMPK-dependent activation of pyruvate dehydrogenase kinase. Biochim Biophys Acta 2013; 1833: 1147-56.10.1016/j.bbamcr.2013.01.02523376776Search in Google Scholar

58. Jang SM, Kim JW, Kim CH, Kim D, Rhee S, Choi KH. p19(ras) Represses proliferation of non-small cell lung cancer possibly through interaction with Neuron-Specific Enolase (NSE). Cancer Lett 2010; 289: 91-8..10.1016/j.canlet.2009.08.00519713034Search in Google Scholar

59. Amoêdo Ní D, Valencia J P, Rodrigues M F, Galina A, Rumjanek F D. How does the metabolism of tumour cells differ from that of normal cells. Biosci Rep. 2013; 33: e00080.10.1042/BSR20130066382882124079832Search in Google Scholar

60. Sedoris KC, Thomas SD, Miller DM. Hypoxia induces differential translation of enolase/MBP-1. BMC Cancer 2010; 10: 157.10.1186/1471-2407-10-157287338820412594Search in Google Scholar

61. Vinores SA, Bonnin JM, Rubinstein LJ, Marangos PJ. Immunohistochemical demonstration of neuron-specific enolase in neoplasms of the CNS and other tissues. Arch Pathol Lab Med 1984; 108: 536-40.Search in Google Scholar

62. Vinores SA, Marangos PJ, Bonnin JM, Rubinstein LJ. Immunoradiometric and immunohistochemical demonstration of neuron-specific enolase in experimental rat gliomas. Cancer Res 1984; 44: 2595-9.Search in Google Scholar

63. Kondoh H, Lleonart ME, Bernard D, Gil J. Protection from oxidative stress by enhanced glycolysis; a possible mechanism of cellular immortalization. Histol Histopathol 2007; 22: 85-90.Search in Google Scholar

64. Pelicano H, Martin DS, Xu RH, Huang P. Glycolysis inhibition for anticancer treatment. Oncogene 2006; 25: 4633-46.10.1038/sj.onc.120959716892078Search in Google Scholar

65. Takei N, Kondo J, Nagaike K, Ohsawa K, Kato K, Kohsaka S. Neuronal survival factor from bovine brain is identical to neuron-specific enolase. J Neurochem 1991; 57: 1178-84.10.1111/j.1471-4159.1991.tb08277.x1895102Search in Google Scholar

66. Hafner A, Glavan G, Obermajer N, Zivin M, Schliebs R, Kos J. Neuroprotective role of gamma-enolase in microglia in a mouse model of Alzheimer’s disease is regulated by cathepsin X. Aging Cell 2013; 12: 604-14.10.1111/acel.1209323621429Search in Google Scholar

67. Hattori T, Ohsawa K, Mizuno Y, Kato K, Kohsaka S. Synthetic peptide corresponding to 30 amino acids of the C-terminal of neuron-specific enolase promotes survival of neocortical neurons in culture. Biochem Biophys Res Commun 1994; 202: 25-30.10.1006/bbrc.1994.18888037719Search in Google Scholar

68. Hafner A, Obermajer N, Kos J. gamma-Enolase C-terminal peptide promotes cell survival and neurite outgrowth by activation of the PI3K/Akt and MAPK/ERK signalling pathways. Biochem J 2012; 443: 439-50.10.1042/BJ2011135122257123Search in Google Scholar

69. Pišlar AH, Kos J. C-terminal peptide of gamma-enolase impairs amyloid-beta-induced apoptosis through p75(NTR) signaling. Neuromolecular Med 2013; 15: 623-35.10.1007/s12017-013-8247-923842744Search in Google Scholar

70. Wendt W, Zhu X-R, Lübbert H, Stichel CC. Differential expression of cathepsin X in aging and pathological central nervous system of mice. Expl Neurol 2007; 204: 525-40.10.1016/j.expneurol.2007.01.00717306794Search in Google Scholar

71. Kos J, Vižin T, Fonović UP, Pišlar A. Intracellular signaling by cathepsin X: Molecular mechanisms and diagnostic and therapeutic opportunities in cancer. Semin Cancer Biol 2015; 31: 76-83.10.1016/j.semcancer.2014.05.001Search in Google Scholar

72. Amberger-Murphy V. Hypoxia helps glioma to fight therapy. Curr Cancer Drug Targets 2009; 9: 381-90.10.2174/156800909788166637Search in Google Scholar

73. Levin VA, Panchabhai SC, Shen L, Kornblau SM, Qiu Y, Baggerly KA. Different changes in protein and phosphoprotein levels result from serum starvation of high-grade glioma and adenocarcinoma cell lines. J Proteome Res 2010; 9: 179-91.10.1021/pr900392bSearch in Google Scholar

74. Levin VA, Panchabhai S, Shen L, Baggerly KA. Protein and phosphoprotein levels in glioma and adenocarcinoma cell lines grown in normoxia and hypoxia in monolayer and three-dimensional cultures. Proteome Sci 2012; 10: 5.10.1186/1477-5956-10-5Search in Google Scholar

75. Yan T, Skaftnesmo KO, Leiss L, Sleire L, Wang J, Li X, et al. Neuronal markers are expressed in human gliomas and NSE knockdown sensitizes. BMC Cancer 2011; 11: 524.10.1186/1471-2407-11-524Search in Google Scholar

76. Yamaguchi H, Condeelis J. Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim Biophys Acta 2007; 1773: 642-52.10.1016/j.bbamcr.2006.07.001Search in Google Scholar

77. Walsh JL, Keith TJ, Knull HR. Glycolytic enzyme interactions with tubulin and microtubules. Biochim Biophys Acta 1989; 999: 64-70.10.1016/0167-4838(89)90031-9Search in Google Scholar

78. Trojanowicz B, Winkler A, Hammje K, Chen Z, Sekulla C, Glanz D, et al. Retinoic acid-mediated down-regulation of ENO1/MBP-1 gene products caused decreased invasiveness of the follicular thyroid carcinoma cell lines. J Mol Endocrinol 2009; 42: 249-60.10.1677/JME-08-0118Search in Google Scholar

79. Georges E, Bonneau AM, Prinos P. RNAi-mediated knockdown of alpha-enolase increases the sensitivity of tumor cells to antitubulin chemotherapeutics. Int J Biochem Mol Biol 2011; 2: 303-8.Search in Google Scholar

80. Kasprzak A, Zabel M, Biczysko W. Selected markers (chromogranin A, neuron-specific enolase, synaptophysin, protein gene product 9.5) in diagnosis and prognosis of neuroendocrine pulmonary tumours. Pol J Pathol 2007; 58: 23-33.Search in Google Scholar

81. Tapia FJ, Polak JM, Barbosa AJ, Bloom SR, Marangos PJ, Dermody C, et al. Neuron-specific enolase is produced by neuroendocrine tumours. Lancet 1981; 1: 808-11.10.1016/S0140-6736(81)92682-9Search in Google Scholar

82. Lopez J. Carl A. Burtis, Edward R. In: Ashwood and David E. Bruns, editors. Tietz textbook of clinical chemistry and molecular diagnosis. 5th edition. St. Louis, USA: Elsevier; 2012.10.1007/s12291-012-0287-7Search in Google Scholar

83. Stieber P, Hatz R, Holdenrieder S, Molina R, Nap M, von Pawel J, et al. National Academy of Clinical Biochemistry Guidelines for the use of tumor markers in lung cancer. Section 3P. AACC press; 2006. [citated 2015 Jan 25]. Available at http://www.nacb.org.Search in Google Scholar

84. Hao X, Sun B, Hu L, Lahdesmaki H, Dunmire V, Feng Y, et al. Differential gene and protein expression in primary breast malignancies and their lymph node metastases as revealed by combined cDNA microarray and tissue microarray analysis. Cancer 2004; 100: 1110-22.10.1002/cncr.2009515022276Search in Google Scholar

85. Miremadi A, Pinder SE, Lee AH, Bell JA, Paish EC, Wencyk P, et al. Neuroendocrine differentiation and prognosis in breast adenocarcinoma. Histopathology 2002; 40: 215-22.10.1046/j.1365-2559.2002.01336.x11895486Search in Google Scholar

86. Sawaki M, Yokoi K, Nagasaka T, Watanabe R, Kagawa C, Takada H, et al. Prognostic importance of neuroendocrine differentiation in Japanese breast cancer patients. Surg Today 2010; 40: 831-5.10.1007/s00595-009-4179-220740345Search in Google Scholar

87. Allen FJ, Van Velden DJ, Heyns CF. Are neuroendocrine cells of practical value as an independent prognostic parameter in prostate cancer? Br J Urol 1995; 75: 751-4.Search in Google Scholar

88. Marangos PJ, Schmechel DE. Neuron specific enolase, a clinically useful marker for neurons and neuroendocrine cells. Annu Rev Neurosci 1987; 10: 269-95.10.1146/annurev.ne.10.030187.0014133551759Search in Google Scholar

89. Rundgren M, Cronberg T, Friberg H, Isaksson A. Serum neuron specific enolase - impact of storage and measuring method. BMC Res Notes 2014; 7: 726.10.1186/1756-0500-7-726421682925319200Search in Google Scholar

90. Yuan SM. Biomarkers of cerebral injury in cardiac surgery. Anadolu Kardiyol Derg 2014; 14: 638-45.10.5152/akd.2014.532125163078Search in Google Scholar

91. Sturgeon C. Practice guidelines for tumor marker use in the clinic. Clin Chem 2002; 48: 1151-9.10.1093/clinchem/48.8.1151Search in Google Scholar

92. Fujiwara H, Arima N, Ohtsubo H, Matsumoto T, Kukita T, Kawada H, et al. Clinical significance of serum neuron-specific enolase in patients with adult T-cell leukemia. Am J Hematol 2002; 71: 80-4.10.1002/ajh.1019012353304Search in Google Scholar

93. Wang L, Liu P, Chen X, Geng Q, Lu Y. Serum neuron-specific enolase is correlated with clinical outcome of patients with non-germinal center B cell-like subtype of diffuse large B-cell lymphoma treated with rituximab-based immunochemotherapy. Med Oncol 2012; 29: 2153-8.10.1007/s12032-011-0049-z21877195Search in Google Scholar

94. Lorenz J, Dippold W. Neuron-specific enolase-a serum marker for malignant melanoma. J Natl Cancer Inst 1989; 81: 1754-5.10.1093/jnci/81.22.17542810389Search in Google Scholar

95. Ro C, Chai W, Yu VE, Yu R. Pancreatic neuroendocrine tumors: biology, diagnosis, and treatment. Chin J Cancer 2013; 32: 312-24.10.5732/cjc.012.10295Search in Google Scholar

96. Massironi S, Sciola V, Peracchi M, Ciafardini C, Spampatti MP, Conte D. Neuroendocrine tumors of the gastro-entero-pancreatic system. World J Gastroenterol 2008; 14: 5377-84.10.3748/wjg.14.5377Search in Google Scholar

97. DeYoung C, Edelman M. Prognostic Factors for Small-Cell Lung Cancer. In: Syrigos K, Nutting C, Roussos C, editors. Tumors of the chest. Berlin, Heidelberg: Springer; 2006. p. 189-97.10.1007/3-540-31040-1_15Search in Google Scholar

98. Sturgeon CM, Duffy MJ, Stenman UH, Lilja H, Brunner N, Chan DW, et al. National Academy of Clinical Biochemistry laboratory medicine practice guidelines for use of tumor markers in testicular, prostate, colorectal, breast, and ovarian cancers. Clin Chem 2008; 54: e11-79.10.1373/clinchem.2008.105601Search in Google Scholar

99. Lamberts SWJ, Hofland LJ, Nobels FRE. Neuroendocrine tumor markers. Front Neuroendocrinol 2001; 22: 309-39.10.1006/frne.2001.0218Search in Google Scholar

100. Riley RD, Heney D, Jones DR, Sutton AJ, Lambert PC, Abrams KR, et al. A systematic review of molecular and biological tumor markers in neuroblastoma. Clin Cancer Res 2004; 10: 4-12.10.1158/1078-0432.CCR-1051-2Search in Google Scholar

101. Johnsson P, Blomquist S, Lührs C, Malmkvist G, Alling C, Solem J-O, et al. Neuron-specific enolase increases in plasma during and immediately after extracorporeal circulation. Ann Thorac Surg 2000; 69: 750-4.10.1016/S0003-4975(99)01393-4Search in Google Scholar

102. Ramont L, Thoannes H, Volondat A, Chastang F, Millet MC, Maquart FX. Effects of hemolysis and storage condition on neuron-specific enolase (NSE) in cerebrospinal fluid and serum: implications in clinical practice. Clin Chem Lab Med 2005; 43: 1215-7.10.1515/CCLM.2005.21016232088Search in Google Scholar

103. Marangos PJ, Campbell IC, Schmechel DE, Murphy DL, Goodwin FK. Blood platelets contain a neuron-specific enolase subunit. J Neurochem 1980; 34: 1254-8.10.1111/j.1471-4159.1980.tb09967.x7373305Search in Google Scholar

104. Trape J, Filella X, Alsina-Donadeu M, Juan-Pereira L, Bosch-Ferrer A, Rigo-Bonnin R. Increased plasma concentrations of tumour markers in the absence of neoplasia. Clin Chem Lab Med 2011; 49: 1605-20.10.1515/CCLM.2011.69421892908Search in Google Scholar

105. Collazos J, Esteban C, Fernandez A, Genolla J. Measurement of the serum tumor marker neuron-specific enolase in patients with benign pulmonary diseases. Am J Respir Crit Care Med 1994; 150: 143-5.10.1164/ajrccm.150.1.8025740Search in Google Scholar

106. Filella X, Cases A, Molina R, Jo J, Bedini JL, Revert L, et al. Tumor markers in patients with chronic renal failure. Int J Biol Markers 1990; 5: 85-8.10.1177/172460089000500207Search in Google Scholar

107. DeGiorgio CM, Gott PS, Rabinowicz AL, Heck CN, Smith TD, Correale JD. Neuron-specific enolase, a marker of acute neuronal injury, is increased in complex partial status epilepticus. Epilepsia 1996; 37: 606-9.10.1111/j.1528-1157.1996.tb00623.xSearch in Google Scholar

108. Strachan MW, Abraha HD, Sherwood RA, Lammie GA, Deary IJ, Ewing FM, et al. Evaluation of serum markers of neuronal damage following severe hypoglycaemia in adults with insulin-treated diabetes mellitus. Diabetes Metab Res Rev 1999; 15: 5-12.10.1002/(SICI)1520-7560(199901/02)15:1<5::AID-DMRR2>3.0.CO;2-SSearch in Google Scholar

109. Collazos J, Genolla J, Ruibal A. Neuron-specific enolase concentrations in serum in benign liver diseases. Clin Chem 1991; 37: 579-81.10.1093/clinchem/37.4.579Search in Google Scholar

110. Massabki PS, Silva NP, Lourenco DM, Andrade LE. Neuron specific enolase concentration is increased in serum and decreased in platelets of patients with active systemic sclerosis. J Rheumatol 2003; 30: 2606-12.Search in Google Scholar

111. Petrak J, Ivanek R, Toman O, Cmejla R, Cmejlova J, Vyoral D, et al. Deja vu in proteomics. A hit parade of repeatedly identified differentially expressed proteins. Proteomics 2008; 8: 1744-9.10.1002/pmic.200700919Search in Google Scholar

eISSN:
1581-3207
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Clinical Medicine, Internal Medicine, Haematology, Oncology, Radiology