Otwarty dostęp

Causality in Models of Thermal Processes in Ship Engine Rooms with the Use of Bond Graph (BG) Method


Zacytuj

1. Borutzki W.: Bond Graphs a Metodology for Modelling Multidisciplinary Dynamic Systems. Springer, (2010).Search in Google Scholar

2. Cichy M., Kropiwnicki J., Kneba Z.: A Model of Thermal Energy Storage According to the Convention of Bond Graphs (BG) and State Equations (SE). Polish Maritime Research, Vol. 22, nr 4 (88) (2015), pp. 41-47.Search in Google Scholar

3. Cichy M.: Modelowanie systemów energetycznych (Modeling of energetic systems). Wydawnictwo Politechniki Gdańskiej. Gdańsk, (2001), (in Polish).Search in Google Scholar

4. Cieśliński J. T., Mosdorf R.: Gas bubble dynamics - experiment and fractal analysis. International Journal of Heat and Mass Transfer Volume 48, Issue 9, (2005), pp. 1808-1818.Search in Google Scholar

5. Creyx M., et al.: Dynamic modelling of the expansion cylinder of an open Joule cycle Ericsson engine: A bond graph approach. Energy 102 (2016), pp. 31-43.Search in Google Scholar

6. Deja M., Siemiątkowski M. S.: Feature-based generation of machining process plans for optimised parts manufacture. Journal of Intelligent Manufacturing (2013), Volume 24, Issue 4, pp. 831-846.Search in Google Scholar

7. Domachowski Z., Dzida M.: Inlet Air Fogging of Marine Gas Turbine in Power Output Loss Compensation. Polish Maritime Research 4 (88) (2015), Vol. 22, pp. 53-58.Search in Google Scholar

8. Hubbard M., Brewer J. W.: Pseudo Bond Graphs of circulating fluids with Application to Solar Heating Design. Journal of the Franklin Institute Vol. 311, No 6, (1981), pp. 339-354.Search in Google Scholar

9. Kaliński K. J., Galewski M. A.: Chatter vibration surveillance by the optimal-linear spindle speed control. Mechanical Systems and Signal Processing Volume 25, Issue 1, (2011), pp. 383-399.Search in Google Scholar

10. Karnopp D. C., Margolis D. L., Rosenberg R. C.: System dynamics: a unified approach. Wiley, New York, (1990).Search in Google Scholar

11. Korczewski Z., Zacharewicz M.: Alternative diagnostic method applied on marine diesel engines having limited monitoring susceptibility. Transactions of the Institute of Measurement and Control. Vol. 34, No. 8 (2012), pp.937-946.Search in Google Scholar

12. Korczewski Z.: Exhaust Gas Temperature Measurements in Diagnostics of Turbocharged Marine Internal Combustion Engines. Part II Dynamic Measurements. Polish Maritime Research 1 (89) (2016) Vol. 23, pp. 68-76.10.1515/pomr-2016-0010Search in Google Scholar

13. Kortas P., Kropiwnicki J.: Analysis of accumulation possibility of energy dissipated in the braking process of train driven by hybrid locomotive. Combustion Engines, (2015), pp. 631-638.Search in Google Scholar

14. Kowalczyk T., Głuch J., Ziółkowski P.: Analysis of Possible Application of High-Temperature Nuclear Reactors to Contemporary Large-Output Steam Power Plants on Ships. Polish Maritime Research 2 (90) (2016), Vol. 23, pp. 32-41.Search in Google Scholar

15. Kropiwnicki J.: Comparison of energy efficiency of vehicles powered by different fuels. Combustion Engines, nr 3, (2012), pp .34-43.10.19206/CE-117029Search in Google Scholar

16. Litwin W., Olszewski A.: Water-Lubricated Sintered Bronze Journal Bearings - Theoretical and Experimental Research. Tribology Transactions. Vol. 57, No. 1 (2014), pp.114-122.Search in Google Scholar

17. M.S. Jha, et al.: Particle filter based hybrid prognostics of proton exchange membrane fuel cell in bond graph framework. Computers and Chemical Engineering 95 (2016), pp. 216-230.Search in Google Scholar

18. Mikielewicz D., Mikielewicz J., Tesmar J.: Improved semiempirical method for determination of heat transfer coefficient in flow boiling in conventional and small diameter tubes. International Journal of Heat and Mass Transfer Volume 50, Issues 19-20, (2007), pp. 3949-3956.Search in Google Scholar

19. Mishra C., Samantaray A.K., Chakraborty G.: Bond graph modeling and experimental verification of a novel scheme for fault diagnosis of rolling element bearings in special operating conditions. Journal of Sound and Vibration 377 (2016), pp. 302-330.Search in Google Scholar

20. Paynter H.M.: Analysis and Design of Engineering Systems. The MIT Press Cambridge, Massachusetts (1961).Search in Google Scholar

21. Sagawa J.K., Nagano M.S., Neto M.S.: A closed-loop model of a multi-station and multi-product manufacturing system using bond graphs and hybrid controllers. European Journal of Operational Research (2016), pp. 1-15.Search in Google Scholar

22. Shoureshi R., McLaughlin K. M.: Analytical and Experimental Investigation of Flow-Reversibile Heat Exchangers Using Temperature-Entropy Bond Graphs. Journal of Dynamic Systems, Measurement, and Control, Vol. 106 (2), (1984), pp. 170-175.Search in Google Scholar

23. Silva L.I., et al.: Coupling Bond Graph and Energetic Macroscopic Representation for Electric Vehicle Simulation: Mechatronics 24 (2014), pp. 906-913.Search in Google Scholar

24. Sliwinski P.: The basics of design and experimental tests of the commutation unit of a hydraulic satellite motor. Archives of Civil and Mechanical Engineering, vol. 16, iss. 4 (2016), pp. 634-644.Search in Google Scholar

25. Sosnovsky E., Forget B.: Bond graph representation of nuclear reactor point kinetics and nearly incompressible thermal hydraulics. Annals of Nuclear Energy 68 (2014), pp. 15-29.Search in Google Scholar

26. Thoma J. U., Boumama B. O: Modelling and Simulation in Thermal and Chemical Engineering - a Bond Graph Approach. Springer, (2000).Search in Google Scholar

27. Thoma J. U.: Simulation by Bondgraphs. Springer, Berlin, (1990).10.1007/978-3-642-83922-1Search in Google Scholar

28. Wellstead P.E.: Introduction to System Modeling. Academic Press, London (1979). Search in Google Scholar

eISSN:
2083-7429
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences