Zacytuj

1. Królikowski, W. & Rosłaniec, Z. (2004). Polymer nanocomposites. Kompozyty 4, 3–15 (in Polish)Search in Google Scholar

2. Wilpiszewska, K., Antosik, A.K. & Spychaj, T. (2017). Novel hydrophilic carboxymethyl starch/montmorillonite nano-composite Films. Carbohydr. Polym. 128, 82–89. DOI: 10.1016/j.carbpol.2015.04.023.10.1016/j.carbpol.2015.04.02326005142Open DOISearch in Google Scholar

3. Olejnik, M. (2008). Polymer nanocomposites involving montmorillonite – preparation, evaluation methods, properties and application. Tech. Wyr. Włók. 67–74. (in Polish).Search in Google Scholar

4. Kacperski, M. (2003). Polymer nanocomposites, Kompozyty 3, 225–231. (in Polish).Search in Google Scholar

5. Kacperski, M. (2002). Polymer nanocomposites. Polimery. 47, 801–807. (in Polish)10.14314/polimery.2002.801Search in Google Scholar

6. Malesa, M. (2004). Nanofillers of polymer composites. Elastomery, 3, 12–17 (in Polish)Search in Google Scholar

7. Sikora, M. (2006). Rheological modifiers essential parameter of cosmetic products. Przem. Kosmetyczny 11, 26–31. (in Polish)Search in Google Scholar

8. Kunert, A. & Zaborski, M. (2010). Construction, properties and applications of layered minerals. Przem. Chem. 1, 1510–1517. (in Polish)Search in Google Scholar

9. Komadel, P. (2016). Acid activated clays: Materials in continuous demand. Appl. Clay Sci. 131, 84–99. DOI: 10.1016/j.clay.2016.05.001.10.1016/j.clay.2016.05.001Open DOISearch in Google Scholar

10. Fernandes, C., Catrinescu, C., Castilho, P., Russo, P.A., Carrott, M.R. & Breen, C. (2007). Catalytic conversion of limonene over acid activated Serra de Dentro (SD) bentonite. Appl. Catal. A: General. 318, 108–120. DOI: 10.1016/j.apcata.2006.10.048.10.1016/j.apcata.2006.10.048Search in Google Scholar

11. Koolia, F., Liu, Y., Alshahateet Solhe, F., Messali, M. & Bergaya, F. (2009). Reaction of acid activated montmorillonites with hexadecyl trimethylammonium bromide solution. Appl. Clay Sci. 43, 357–363. DOI: 10.1016/j.clay.2008.10.006.10.1016/j.clay.2008.10.006Open DOISearch in Google Scholar

12. Nagendrappa, G. (2011). Organic synthesis using clay and clay-supported catalysts. Appl. Clay Sci. 53, 106–138. DOI: 10.1016/j.clay.2010.09.016.10.1016/j.clay.2010.09.016Open DOISearch in Google Scholar

13. Stekrova, M., Kumara, N., Aho, A., Sinev, I., Grünert, W., Dahl, J., Roine, J., Arzumanov, S.S., Mäki-Arvela, P. & Yu. Murzin, D. (2014). Isomerization of α-pinene oxide using Fe-supported catalysts: Selective synthesis of campholenic alde-hyde. Appl. Catal. A: General. 470, 162–176. DOI: 10.1016/j.apcata.2013.10.044.10.1016/j.apcata.2013.10.044Open DOISearch in Google Scholar

14. Comelli, N., Avila, M.C., Volzone, C. & Ponzi, M. (2013). Hydration of α-pinene catalyzed by acid clays. Cent. Eur. J. Chem. 11, 689–697. DOI: 10.2478/s11532-013-0217-4.10.2478/s11532-013-0217-4Open DOISearch in Google Scholar

15. Ravasio, N., Zaccheria, F., Gervasini, A. & Messi, C. (2008). A new, Fe based, heterogeneous Lewis acid: Selective isomerization of a-pinene oxide. Catal. Commun. 9, 1125–1127. DOI: 10.1016/j.catcom.2007.10.019.10.1016/j.catcom.2007.10.019Open DOISearch in Google Scholar

16. Kumar, V. & Agarwal, A.K. (2014). A review on catalytic terpene transformation over heterogenous catalyst, Inter. J. Curr. Res. Chem. Pharm. Sci. 1, 78–88.Search in Google Scholar

17. Volcho, K. & Salakhutdinov, N.F. (2008). Transformations of Terpenoids on Acidic Clays. Mini-Rev. Org. Chem. 5, 345–354. DOI: 10.2174/157019308786242151.10.2174/157019308786242151Open DOISearch in Google Scholar

18. Yadav, M.Kr., Chudasama, C.D. & Jasra, R.V. (2004). Isomerisation of α-pinene using modified montmorillonite clays. J. Mol. Catal. A: Chemical, 216, 51–59. DOI: 10.1016/j.molcata.2004.02.004.10.1016/j.molcata.2004.02.004Open DOISearch in Google Scholar

19. Yarovaya, O.I., Korchagina, D.V., Salakhutdinov, N.F. & Tolstikov, G.A. (2012). Reaction of isocembreol and alcohols on clay. Chem. Nat. Comp. 48, 57–59. DOI: 0009-3130/12/4801-0056.10.1007/s10600-012-0158-8Search in Google Scholar

20. Akgu, M., Ozyagcı, B. & Karabakan, A.l. (2013). Evaluation of Fe- and Cr-containing clinoptilolite catalysts for the production of camphene from a-pinene. J. Ind. Enginee. Chem. 19, 240–249. DOI: 10.1016/j.jiec.2012.07.024.10.1016/j.jiec.2012.07.024Open DOISearch in Google Scholar

21. Ilina, I.V., Suslov, E.V., Khomenko, T.M., Korchagina, D.V., Volcho, K.P., Salakhutdinov, N.F. (2009). Natural Mont-morillonite Clay as Prebiotic Catalyst. Paleont. J. 43, 958–964. DOI: 10.1134/S0031030109080139.10.1134/S0031030109080139Open DOISearch in Google Scholar

22. Il’ina, I.V., Volcho, K.P., Korchagina, D.V., Barkhash, V.A. & Salakhutdinov, N.F. (2007). Transformations of (–)-Myrtenal Epoxide over Askanite–Bentonite Clay. Rus. J. Org. Chem. 43, 56–59. DOI: 10.1134/S1070428007010058.10.1134/S1070428007010058Open DOISearch in Google Scholar

23. Wróblewska, A., Makuch, E. & Miądlicki, P. (2016). The studies on the limonene oxidation over the microporous TS-1 catalyst. Catal. Today, 268, 121–129. DOI: 10.1016/j.cattod.2015.11.008.10.1016/j.cattod.2015.11.008Open DOISearch in Google Scholar

24. Marino, D., Gallegos, N.G., Bengoa, J.F., Alvarez, A.M., Cagnoli, M.V., Casuscelli, S.G., Herrero, E.R. & Marchetti S.G. (2008). Ti-MCM-41 catalysts prepared by post-synthesis methods: Limonene epoxidation with H2O2. Catal. Today. 133–135, 632–638. DOI: 10.1016/j.cattod.2007.12.111.10.1016/j.cattod.2007.12.111Open DOISearch in Google Scholar

25. Wróblewska, A. (2014). The epoxidation of limonene over the TS-1 and Ti-SBA-15 catalysts. Molecules. 19, 19907–19922. DOI: 10.3390/molecules191219907.10.3390/191219907Open DOISearch in Google Scholar

26. Pinto, L.D., Dupont, J., de Souza, R.F., Bernardo-Gusmão, K. (2008). Catalytic asymmetric epoxidation of limonene using manganese Schiff-base complexes immobilized in ionic liquids. Catal. Comm. 9, 135–139. DOI: 10.1016/j.catcom.2007.05.025.10.1016/j.catcom.2007.05.025Open DOISearch in Google Scholar

27. Bussi, J., López, A., Peña, F., Timbal, P., Paz, D., Lorenzo, D. & Dellacasa, E. (2003). Liquid phase oxidation of limonene catalyzed by palladium supported on hydrotalcites. Appl. Catal. A: General 253, 177–189. DOI: 10.1016/S0926-860X(03)00519-2.10.1016/S0926-860X(03)00519-2Open DOISearch in Google Scholar

28. Ali, B., Al-Wabel, N.A., Shams, S., Ahamad, A., Khan, S.A. & Anwar, F. (2015). Essential oils used in aromatherapy: A systemic review. APJTB 5, 601–611. DOI: 10.1016/j.apjtb.2015.05.007.10.1016/j.apjtb.2015.05.007Open DOISearch in Google Scholar

29. Chen, T.C., Fonseca, C.O.D. & Schönthal, A.H. (2015). Preclinical development and clinical use of perillyl alcohol for chemoprevention and cancer therapy. Am. J. Can. Res. 5, 1580–1593.Search in Google Scholar

30. Li, C.D., Sablong, R.J. & Koning Cor, E. (2016). Chemoselective Alternating copolymerization of limonene dioxide and carbon dioxide: a new highly functional aliphatic epoxy polycarbonate. Angew. Chem. 128, 11744–11748. DOI: 10.1002/anie.201604674.10.1002/anie.20160467427529815Open DOISearch in Google Scholar

31. Morinaga, H. & Sakamoto, M. (2017). Synthesis of multi-functional epoxides derived from limonene oxide and its application to the network polymers. Tetrahedron Lett. 58, 2438–2440. DOI: 10.1016/j.tetlet.2017.05.021.10.1016/j.tetlet.2017.05.021Open DOISearch in Google Scholar

32. Linnekoski, J.A., Asikainen, M., Heikkinen, H., Kaila, R. K., Räsänen, J. & Harlin A. (2014). Production of p-cymene from crude sulphate turpentine with commercial zeolite catalyst using a continuous fixed bed reactor. Org. Process Res. & Dev. 18, 1468–1475. DOI. 10.1021/op500160f.10.1021/op500160fOpen DOISearch in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering