Otwarty dostęp

Thermally activated persulfate treatment and mineralization of a recalcitrant high TDS petrochemical wastewater


Zacytuj

1. Botalova, O.S., Frauenrath, J. & Dsikowitzky, T.L. (2009). Identification and chemical characterization of specific organic constituents of petrochemical effluents. Water Res. 43(15), 3797–3812. DOI: org/10.1016/j.watres.2009.06.006.10.1016/j.watres.2009.06.00619577787Search in Google Scholar

2. Cechinel, M.A.P.M., Pozdniakova, D.A., Mazur, T.A., Boaventura, L.P. & Rui, A.R. (2016). Removal of metal ions from a petrochemical wastewater using brown macro-algae as natural cation-exchangers. J. Chem. Eng. 286, 1–15. DOI: org/10.1016/j.cej.2015.10.042.10.1016/j.cej.2015.10.042Search in Google Scholar

3. Kalantary, R.R., Mohseni-Bandpi, A., Esrafili, A., Nasseri, S., Ashmagh, F.R., Jorfi, S. & Ja’fari, M. (2014). Effectiveness of biostimulation through nutrient content on the bioremediation of phenanthrene contaminated soil. J. Environ. Health Sci. Eng. 24, 12(1), 143. DOI: 10.1186/s40201-014-0143-1.10.1186/s40201-014-0143-1430198725610635Search in Google Scholar

4. Rezaei Kalantary, R.B.A., Mohseni Bandpi, A., Esrafili, A. & Jorfi, S. (2013). Modification of PAHs Biodegradation with Humic Compounds. J. Soil & Sedim. Contamin. 22, 185–198. DOI: org/10.1080/15320383.2013.722139.10.1080/15320383.2013.722139Search in Google Scholar

5. Lefebvre, O. & Moletta, R. (2006). Treatment of organic pollution in industrial saline wastewater: a literature review. Water Res. 40(20), 3671–3682. DOI: org/10.1016/j.watres.2006.08.027.10.1016/j.watres.2006.08.02717070895Search in Google Scholar

6. Yeo, I.A., Yoon, S.H. & Yee, J.J. (2013). Development of an urban energy demand forecasting system to support environmentally friendly urban planning. Appl. Energy 110, 304–317. DOI: org/10.1016/j.apenergy.2013.04.065.10.1016/j.apenergy.2013.04.065Search in Google Scholar

7. Jorfi, S., Rezaee, A., Mobeh-Ali, G.A. & Jaafarzadeh, N.A. (2013) Application of Biosurfactants Produced by Pseudomonas aeruginosa SP4 for Bioremediation of Soils Contaminated by Pyrene. J. Soil & Sedim. Contamin. 22, 890–911. DOI: org/10.1080/15320383.2013.770439.Search in Google Scholar

8. Tayybi, T., Jorfi, S., Ghaffari, S. & Kujlu, R. 2016. Bioremediation of n-hexadecane contaminated soils using pseudomonas aeruginosa bacteria isolated from coastal areas. J. Mazan.Uni. Med. Sci. 26(140), 127–136.Search in Google Scholar

9. Ahmadi, M.R.M.H.R., Jaafarzadeh, N., Mostoufid, A., Saeedie, R., Barzegarc, G. & Jorfia, S. (2017). Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite. J. Environ. Manage 186, 55–63. DOI: org/10.1016/j.jenvman.2016.09.08810.1016/j.jenvman.2016.09.08827852522Search in Google Scholar

10. Namata, N. & Patil, S.R.S. (2015). Degradation of Reactive Yellow 145 dye by persulfate using microwave and conventional heating. J. Water Process. Eng. 7, 314–327. DOI: org/10.1016/j.jwpe.2015.08.003.10.1016/j.jwpe.2015.08.003Search in Google Scholar

11. Soltani, R.D.J.S., Ramezani, H. & Purfadakari, S. (2016). Ultrasonically induced ZnO-biosilica nanocomposite for degradation of a textile dye in aqueous phase. Ultra. Sonochem 28, 69–78. DOI: 10.1016/j.ultsonch.2015.07.002.10.1016/j.ultsonch.2015.07.00226384885Search in Google Scholar

12. Sundarapandiyan, S.C.R., Ramanaiah, B., Krishnan, S. & Saravanan, P. (2010). Electrochemical oxidation and reuse of tannery saline wastewater. J. Hazard Mater. 180(1–3), 197–203. DOI: org/10.1016/j.jhazmat.2010.04.013.10.1016/j.jhazmat.2010.04.01320435417Search in Google Scholar

13. Jorfi, S.D.C.S.R., Ahmadi, M., Khataeed, A. & Safarie, M. (2017). Sono-assisted adsorption of a textile dye on milk vetch-derived charcoal supported by silica nanopowder. J Environ Manage. 187, 111–121. DOI: org/10.1016/j.jenvman.2016.11.04210.1016/j.jenvman.2016.11.04227888712Search in Google Scholar

14. Darvishi Cheshmeh Soltani, R.J., Safari, S. & Rajaei, M.M.S. (2016). Enhanced sonocatalysis of textile wastewater using bentonite-supported ZnO nanoparticles: Response surface methodological approach. J. Environ. Manage. 179, 47–57. DOI: org/10.1016/j.jenvman.2016.05.001.10.1016/j.jenvman.2016.05.00127173890Search in Google Scholar

15. Naddeo, V.C.A. (2013). Wastewater Treatment by Combination of Advanced Oxidation Processes and Conventional Biological Systems. J. Bioremed. Biodeg. 4, 208. DOI: 10.4172/2155-6199.1000208.10.4172/2155-6199.1000208Search in Google Scholar

16. Yang, Q.X.P., Ding, P., Chu, L. & Wang, J. (2015). Treatment of petrochemical wastewater by microaerobic hydrolysis and anoxic/oxic processes and analysis of bacterial diversity. Biores. Technol. 196, 169–175. DOI: org/10.1016/j.biortech.2015.07.087.10.1016/j.biortech.2015.07.08726233329Search in Google Scholar

17. Xiong, X.S.B., Zhang, J., Gao, N., Shen, J., Li, J. & Guan, X. (2014). Activating persulfate by Fe(0) coupling with weak magnetic field: performance and mechanism. Water Res. 62, 53–62. DOI: org/10.1016/j.watres.2014.05.042.10.1016/j.watres.2014.05.04224934323Search in Google Scholar

18. Abu Amr, S.S.A. & Adlan, M.N. (2013). Optimization of stabilized leachate treatment using ozone/persulfate in the advanced oxidation process. Waste Manag. 33(6), 1434–1441. DOI: org/10.1016/j.wasman.2013.01.039.10.1016/j.wasman.2013.01.03923498721Search in Google Scholar

19. Qi, C.L., Xitao L., Chunye Z., Xiaohui M., Jun, T.H. & Ye, W. (2014). Degradation of sulfamethoxazole by microwave-activated persulfate: Kinetics, mechanism and acute toxicity. J. Chem. Eng. 249, 6–14. DOI: org/10.1016/j.cej.2014.03.086.10.1016/j.cej.2014.03.086Search in Google Scholar

20. Furman, O.S., Teel, A.L. & Watts, R.J. (2010). Mechanism of base activation of persulfate. Environ. Sci. Technol. 44, 6423–6428. DOI: 10.1021/es1013714.10.1021/es101371420704244Search in Google Scholar

21. Liang, C.J. (2010). Mass transfer and chemical oxidation of naphthalene particles with zerovalent iron activated persulfate. Environ. Sci. Technol. 44, 8203–8208. DOI: 10.1021/es903411a.10.1021/es903411a20879763Search in Google Scholar

22. Tan, C.G., Deng, N., Yang, A., & Deng, N. (2012). Heat-activated persulfate oxidation of diuron in water. J. Chem. Eng. 203, 294–300. DOI: org/10.1016/j.seppur.2013.03.003.10.1016/j.cej.2012.07.005Search in Google Scholar

23. Weng, C.H. & Tsai, K.L. (2016). Ultrasound and heat enhanced persulfate oxidation activated with Fe(0) aggregate for the decolorization of C.I. Direct Red 23. Ultr. Sonochem. 29, 11–18. DOI: org/10.1016/j.ultsonch.2015.08.012.10.1016/j.ultsonch.2015.08.012Search in Google Scholar

24. Ji, Y., Shi, Y., Dong, W., Wen, X., Jiang, M. & Lu, J. (2016). Thermo-activated persulfate oxidation system for tetracycline antibiotics degradation in aqueous solution. J. Chem. Eng. 298, 225–233. DOI: org/10.1016/j.cej.2016.04.028.10.1016/j.cej.2016.04.028Search in Google Scholar

25. Fan, Y.J.Y., Kong, D., Lu, J. & Zhou, Q. (2015). Kinetic and mechanistic investigations of the degradation of sulfamethazine in heat-activated persulfate oxidation process. J Hazard Mater. 300, 39–47. DOI: org/10.1016/j.jhazmat.2015.06.058.10.1016/j.jhazmat.2015.06.058Search in Google Scholar

26. Tan, C., Gao, N., Deng, Y., Rong, W., Zhou, S. & Lu, N. (2013). Degradation of antipyrine by heat activated persulfate. Separat. Purif. Technol. 109, 122–128. DOI: 10.1016/j.seppur.2013.03.003.10.1016/j.seppur.2013.03.003Search in Google Scholar

27. APHA: Standard Methods for the Examination of Water & Wastewater. twenty first ed. American Public Health Assoiation, Washington, DC 2005.Search in Google Scholar

28. Chen, X.M.M. & Zhang, Y. (2016). Degradation of p-Nitrophenol by thermally activated persulfate in soil system. J. Chem. Eng. 283, 1357–1365. DOI: org/10.1016/j.cej.2015.08.107.10.1016/j.cej.2015.08.107Search in Google Scholar

29. Vicente, F., Santos, A., Romero, A. & Rodriguez, S. (2011). Kinetic study of diuron oxidation and mineralization by persulphate: Effects of temperature, oxidant concentration and iron dosage method. J. Chem. Eng. 170(1), 127–135. DOI: org/10.1016/j.cej.2011.03.042.10.1016/j.cej.2011.03.042Search in Google Scholar

30. Zhang, M., Chen, X., Zhou, H., Murugananthan, M. & Zhang, Y. (2015). Degradation of p-nitrophenol by heat and metal ions co-activated persulfate. J. Chem. Eng. 264, 39–47. DOI: org/10.1016/j.cej.2014.11.060.10.1016/j.cej.2014.11.060Search in Google Scholar

31. Gao, Y.Q., Gao, N.Y., Deng, Y., Yang, Y.Q. & Ma, Y. (2012). Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water. J. Chem. Eng. 195–196, 248–253. DOI: org/10.1016/j.cej.2012.04.084.10.1016/j.cej.2012.04.084Search in Google Scholar

32. Yang, S., Yang, X., Shao, X., Niu, R. & Wang, L. (2011). Activated carbon catalyzed persulfate oxidation of Azo dye acid orange 7 at ambient temperature. J. Hazard. Mater. 186(1), 659–666. DOI: org/10.1016/j.jhazmat.2010.11.057.10.1016/j.jhazmat.2010.11.057Search in Google Scholar

33. Yang, S., Wang, P., Yang, X., Wei, G., Zhang, W. & Shan, L. (2009). A novel advanced oxidation process to degrade organic pollutants in wastewater: Microwave-activated persulfate oxidation. J. Environ. Sciences. 21(9), 1175–1180. DOI: 10.1016/S1001-0742(08)62399-2.10.1016/S1001-0742(08)62399-2Search in Google Scholar

34. Vicente, F.S.A., Sagüillo, E.G. & Villacorta, A.M. (2012). Diuron abatement in contaminated soil using Fenton-like process. J. Chem. Eng. 183, 357–364. DOI: org/10.1016/j.cej.2012.01.01010.1016/j.cej.2012.01.010Search in Google Scholar

35. Hori, H.Y.A., Hayakawa, E., Taniyasu, S., Yamashita, N., Kutsuna, S. & Kiatagawa, H. (2005). Efficient Decomposition of Environmentally Persistent Perfluorocarboxylic Acids by Use of Persulfate as a Photochemical Oxidant. J. Environ. Sci. Technol. 39, 2383–2388. DOI: 10.1021/es0484754.10.1021/es0484754Search in Google Scholar

36. Ji, Y., Dong, C., Kong, D., Lu, J. & Zhou, Q. (2015). Heat-activated persulfate oxidation of atrazine: Implications for remediation of groundwater contaminated by herbicides. J. Chem. Eng. 263, 45–54. DOI: org/10.1016/j.cej.2014.10.097.10.1016/j.cej.2014.10.097Search in Google Scholar

37. Deng, J., Shao, Y., Gao, N., Deng, Y., Zhou, S. & Hu, X. (2013). Thermally activated persulfate (TAP) oxidation of antiepileptic drug carbamazepine in water. J. Chem. Eng. 228, 765–771. DOI: org/10.1016/j.cej.2013.05.044.10.1016/j.cej.2013.05.044Search in Google Scholar

38. Park, S., Lee, L.S., Medina, V.F., Zull, A. & Waisner, S. (2016). Heat-activated persulfate oxidation of PFOA, 6:2 fluorotelomer sulfonate, and PFOS under conditions suitable for in-situ groundwater remediation. Chemosphere 145, 376–383. DOI: 10.1016/j.chemosphere.2015.11.097.10.1016/j.chemosphere.2015.11.097Search in Google Scholar

39. Kordkandi, S.A. & Forouzesh, M. (2014). Application of full factorial design for methylene blue dye removal using heat-activated persulfate oxidation. J. Taiwan Ins. Chem. Eng. 45(5), 2597–2604. DOI: org/10.1016/j.jtice.2014.06.015.10.1016/j.jtice.2014.06.015Search in Google Scholar

40. Zou, J., Ma, J., Zhang, X. & Xie, P. (2014). Rapid spectrophotometric determination of peroxymonosulfate in water with cobalt-mediated oxidation decolorization of methyl orange. J. Chem. Eng. 253, 34–39. DOI: org/10.1016/j.cej.2014.05.042.10.1016/j.cej.2014.05.042Search in Google Scholar

41. Deng, Y. & Ezyske, C.M. (2011). Sulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachate. Water Res. 45(18), 6189–6194. DOI: org/10.1016/j.watres.2011.09.015.10.1016/j.watres.2011.09.015Search in Google Scholar

42. Furman, O.S., Teel, A, Ahmad, M. & Watts, R.J. (2011). Effect of Basicity on Persulfate Reactivity. J. Environ. Eng. 137(4), 241–247. DOI: 10.1061/(ASCE)EE.1943-7870.0000323.10.1061/(ASCE)EE.1943-7870.0000323Search in Google Scholar

43. Ahmadian, M.Y., Van Ginkel, N., Zare, S.W., Rahimi, M.R. & Fatehizadeh, S.A. (2012). Kinetic study of slaughterhouse wastewater treatment by electrocoagulation using Fe electrodes. Water Sci. Technol. 66(4), 754–760. DOI: 10.2166/wst.2012.232.10.2166/wst.2012.23222766863Search in Google Scholar

44. Huang, R., Fang, Z., Fang, X. & Tsang, E.P. (2014). Ultrasonic fenton-like catalytic degradation of bisphenol a by ferroferric oxide(fe3o4) nanoparticles prepared from steel pickling waste liquor. J. Coll. & Inter Sci. 436, 258–266. DOI: org/10.1016/j.jcis.2014.08.035.10.1016/j.jcis.2014.08.03525280370Search in Google Scholar

45. Jorfi, S., Barzegar, G., Ahmadi, M., Darvishi Cheshmeh Soltani, R., Alah Jafarzadeh Haghighifard, N., Takdastan, A., Saeedi, R. & Abtahi, M. (2016). Enhanced coagulation-photocatalytic treatment of Acid red 73 dye and real textile wastewater using UVA/synthesized MgO nanoparticles. J. Environ. Manage 177, 111–118. DOI: 10.1016/j.jenvman. DOI: org/10.1016/j.jcis.2014.08.035.Search in Google Scholar

46. Cai, C.Z., Zhong, H. & Hou, X.L. (2014). Electrochemical enhanced heterogeneous activation of peroxydisulfate by Fe-Co/SBA-15 catalyst for the degradation of Orange II in water. Water Res. 66, 473–485. DOI: org/10.1016/j.watres.2014.08.039.10.1016/j.watres.2014.08.03925259475Search in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering