Otwarty dostęp

Oxidative decomposition of methanol in a vibroacoustic fluidized bed of Ag-coated cenosphere core-shell catalyst


Zacytuj

1. World Health Organization. (2016). Air Quality. Data and statistics. http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/data-and-statistics, access on date 2016-04-21.Search in Google Scholar

2. Samet, J.M. & Cohen, A.J. (1999). Air pollution and lung cancer. In: Holgate S.T., Samet J.M., Koren, H.S., Maynard, R.L,. eds. Air Pollution and Health. San Diego, CA: Academic Press, 841–864.10.1016/B978-012352335-8/50111-3Search in Google Scholar

3. Jedrychowski, W., Becher, H., Wahrendorf, J. & Basa-Cierpialek, Z. (1990). A case-control study of lung cancer with special reference to the effect of air pollution in Poland. J. Epidemiol Com. Health, 44, 114–120. DOI: 10.1136/jech.44.2.114.10.1136/jech.44.2.11410606172370498Search in Google Scholar

4. Vena, J.E. (1982). Air pollution as a risk factor in lung cancer. Am. J. Epidemiol. 116, 42–56.10.1093/oxfordjournals.aje.a1134017102655Search in Google Scholar

5. Directive 2004/42/CE of the European Parliament and of the Council of 21 April 2004 on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain paints and varnishes and vehicle refinishing products and amending Directive 1999/13/EC http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32004L0042, access on date 2016-04-21.Search in Google Scholar

6. Sahu, L.K., Yadav, R. & Pal, D. (2016). Source identification of VOCs at an urban site of western India: Effect of marathon events and anthropogenic emissions, J. Geophys. Res. Atmos., 121(5) 2416–2433. DOI: 10.1002/2015JD024454.10.1002/2015JD024454Search in Google Scholar

7. Sahu, L.K. & Saxena, P. (2015). High time and mass resolved PTR-TOF-MS measurements of VOCs at an urban site of India during winter: role of anthropogenic, biomass burning, biogenic and photochemical sources. Atmos. Res., 164, 84–94. DOI: 10.1016/j.atmosres.2015.04.021.10.1016/j.atmosres.2015.04.021Search in Google Scholar

8. Kołodziej, A., Łojewska, J. & Kleszcz, T. (2007). Structured catalytic reactor for VOC combustion. Pol. J. Chem. Technol. 9(1), 10–14. DOI: 10.2478/v10026-007-0004-0.10.2478/v10026-007-0004-0Search in Google Scholar

9. The National Centre for Emissions Management (KOBiZE)(in Polish: Krajowy Ośrodek Bilansowania i Zarządzania Emisjami, (2012). Material for the regulation and the requirements for balancing emissions of non-methane Volatile Organic Compounds (in Polish: Materiał dotyczący regulacji oraz wymagań w zakresie bilansowania emisji Niemetanowych Lotnych Związków Organicznych (NMLZO) ), https://krajowabaza.kobize.pl/docs/NMLZO-21-12-2012.pdf, access on date 2016-04-21.Search in Google Scholar

10. Cheng, W.H. & Kung, H.H. (1994). Methanol Production and Use. New York, Marcel Dekker INC.Search in Google Scholar

11. Reuss, G., Disteldorf, W., Gamer, A.O., Hilt, A. (2000). Formaldehyde, Ullmann’s Encyclopedia of Industrial Chemistry. DOI: 10.1002/14356007.a11_619.10.1002/14356007.a11_619Search in Google Scholar

12 Sigma-Aldrich, (2016). Safety Data Sheet of Formaldehyde. http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=PL&language=pl&productNumber=252549&brand=SIAL, access on date 2016-04-21.Search in Google Scholar

13. Parus, W.J. & Paterkowski, W. (2009). Catalytic oxidation of organic pollutants. Pol. J. Chem. Technol. 11(4) 30–37. DOI: 10.2478/v10026-009-0040-z.10.2478/v10026-009-0040-zSearch in Google Scholar

14. Lee, P.F., Matsui, H., Xu, D.W. & Wang, N.S. (2013). Thermal Decomposition and Oxidation of CH3OH. J. Phys. Chem. A, 117, 525−534. DOI: 10.1021/jp309745p.10.1021/jp309745p23244587Search in Google Scholar

15. Tsou, J., Magnoux, P., Guisnet M., Órfao, J.J.M. & Figueiredo, J.L. (2005). Catalytic oxidation of volatile organic compounds. Oxidation of methyl-isobutyl-ketone over Pt/zeolite catalysts. Appl Catal B Environ 57, 117–123. DOI: 10.1016/j.apcatb.2004.10.013.10.1016/j.apcatb.2004.10.013Search in Google Scholar

16. Shimoda, N., Umehara, S., Kasahara, M., Hongo, T., Yamazaki, A. & Satokawa, S. (2015). Methanol oxidative decomposition over zirconia supported silver catalyst and its reaction mechanism. Appl. Catal. Gen. 507, 56–64. DOI: 10.1016/j.apcata.2015.09.017.10.1016/j.apcata.2015.09.017Search in Google Scholar

17. Borasio, M., Rodrıguez de la Fuente O., Rupprechter, G. & Freund H.J. (2005). In Situ Studies of Methanol Decomposition and Oxidation on Pd(111) by PM-IRAS and XPS Spectroscopy. J. Phys. Chem. B, 109(38), 17791–17794. DOI: 10.1021/jp053855c.10.1021/jp053855cSearch in Google Scholar

18. Waterhouse, G.I.N., Bowmaker, G.A. & Metson, J.B. (2004). Mechanism and active sites for the partial oxidation of methanol to formaldehyde over an electrolytic silver catalyst, Appl. Catal. Gen. 265(1), 85–101. DOI: 10.1016/j.apcata.2004.01.016.10.1016/j.apcata.2004.01.016Search in Google Scholar

19. Anshits, N.N., Mikhailova O.A., Salanov A.N. & Anshits A.G. (2010). Chemical composition and structure of the shell of fly ash non-perforated cenospheres produced from the combustion of the Kuznetsk coal (Russia). Fuel 89(8), 1849–1862. DOI: 10.1016/j.fuel.2010.03.049.10.1016/j.fuel.2010.03.049Search in Google Scholar

20. Bradło, D., Żukowski, W., Czupryński, P. & Witkowski, K. (2014). Acquisition and choice of method for fractionation of cenospheres from fly ashes. Przem. Chem. 93(7), 1114–1117. DOI: 10.12916/przemchem.2014.1114. (in Polish)Search in Google Scholar

21. Kruger, R.A. (1996). The Use of Cenospheres in Refractories. Energeia, Center Appl. Ener. Res. 7, 4. http://www.caer.uky.edu/energeia/pdf/vol7-4.pdfSearch in Google Scholar

22. Elpologistyka Sp. z o.o., Raport z badań mikrosfery, http://www.elpologistyka.pl/wp-content/uploads/2015/11/Raport-z-badan-mikrosfery1.pdf, access on date 2016-04-21.Search in Google Scholar

23. Geldart, D. (1973). Types of Gas Fluidization. Pow. Tech., 7, 285–292. DOI: 10.1016/0032-5910(73)80037-3.10.1016/0032-5910(73)80037-3Search in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering