Otwarty dostęp

Enzymatic synthesis and characterization of polycaprolactone by using immobilized lipase onto a surface-modified renewable carrier


Zacytuj

1. Ma, J., Li, Q., Song, B., Liu, D., Zheng, B., Zhang, Z. & Feng, Y. (2009). Ring-opening polymerization of ε-caprolactone catalyzed by a novel thermophilic esterase from the archaeon Archaeoglobus fulgidus. J. Mol. Catal. B Enzym. 56, 151-157. DOI: 10.1016/j.molcatb.2008.03.012.10.1016/j.molcatb.2008.03.012Search in Google Scholar

2. Li, Q., Li, G., Yu, S., Zhang, Z., Ma, F. & Feng, Y. (2011). Ring-opening polymerization of ε-caprolactone catalyzed by a novel thermophilic lipase from Fervidobacterium nodosum. Process Biochem. 46, 253-257. DOI: 10.1016/j.procbio.2010.08.019.10.1016/j.procbio.2010.08.019Search in Google Scholar

3. Varma, I.K., Albertsson, A.C., Rajkhowa, R. & Srivastava, R.K. (2005). Enzyme catalyzed synthesis of polyesters, Prog. Polym. Sci. 30, 949-981. DOI: 10.1016/j.progpolymsci.2005.06.010.10.1016/j.progpolymsci.2005.06.010Search in Google Scholar

4. Albertsson, A.C. & Srivastava, R.K. (2008). Recent developments in enzyme-catalyzed ring-opening polymerization. Adv. Drug Deliv. Rev. 60, 1077-1093. DOI: 10.1016/j. addr.2008.02.007.Search in Google Scholar

5. Kobayashi, S. (2009). Recent developments in lipase-catalyzed synthesis of polyesters. Macromol. Rapid Commun. 30, 237-266. DOI: 10.1002/marc.200800690.10.1002/marc.200800690Search in Google Scholar

6. Kharrat, N., Ali, Y.B., Marzouk, S., Gargouri, Y.T. & Karra-Châabouni, M. (2011). Immobilization of Rhizopus oryzae lipase on silica aerogels by adsorption: Comparison with the free enzyme. Process Biochem. 46, 1083-1089. DOI: 10.1016/j. procbio.2011.01.029.Search in Google Scholar

7. Zheng, M.M., Lu, Y., Dong, L., Guo, P.M., Deng, Q.C., Li, W.L., Feng, Y.Q. & Huang, F.H. (2012). Immobilization of Candida rugosa lipase on hydrophobic/strong cation-exchange functional silica particles for biocatalytic synthesis of phytosterol esters. Bioresour. Technol. 115, 141-146. DOI: 10.1016/j. biortech.2011.11.128.Search in Google Scholar

8. Iyer, P.V. & Ananthanarayan, L. (2008). Enzyme stability and stabilization-Aqueous and non-aqueous environment. Process Biochem. 43, 1019-1032. DOI: 10.1016/j.procbio.2008.06.004.10.1016/j.procbio.2008.06.004Search in Google Scholar

9. Lee, D.H., Park, C.H., Yeo, J.M. & Kim, S.W. (2006). Lipase immobilization on silica gel using a cross-linking method. J. Ind. Eng. Chem. 12, 777-782.Search in Google Scholar

10. Rodrigues, R.C., Berenguer-Murcia, A. & Fernandez-Lafuente, R. (2011). Coupling chemical modifi cation and immobilization to improve the catalytic performance of enzymes. Adv. Synth. Catal. 353, 2216-2238. DOI: 10.1002/adsc.201100163.10.1002/adsc.201100163Search in Google Scholar

11. Della, V.P., Kühn, I. & Hotza, D. (2002). Rice husk ash as an alternate source for active silica production. Mater. Lett. 57, 818-821. DOI: 10.1016/S0167-577X(02)00879-0.10.1016/S0167-577X(02)00879-0Search in Google Scholar

12. Silva, A.L.P., Nascimento, R.G., Arakaki, L.N.H., Arakaki, T., Espínola, J.G.P. & Fonseca, M.G. (2013). Organofunctionalized silica gel as a support for lipase. J. Non. Cryst. Solids 376, 139-144. DOI: 10.1016/j.jnoncrysol.2013.05.026.10.1016/j.jnoncrysol.2013.05.026Search in Google Scholar

13. Ulker, C. (2015). Immobilization of Lipase on an Inorganic Support Material and Polycaprolactone Synthesis. Istanbul Technical University, Istanbul, Turkey.Search in Google Scholar

14. Harrison, K.L. & Jenkins, M.J. (2004). The effect of crystallinity and water absorption on the dynamic mechanical relaxation behaviour of polycaprolactone. Polym. Int. 53, 1298-1304. DOI: 10.1002/pi.1517.10.1002/pi.1517Search in Google Scholar

15. Öztürk-Düşkünkorur, H.M. (2012). Biopolymer Synthesis by Enzymatic Catalysis and Development of Nanohybrid Systems, Istanbul Technical University, Istanbul, Turkey.Search in Google Scholar

16. Sha, K., Qin, L., Li, D., Liu, X. & Wang, J. (2005). Synthesis and characterization of diblock and triblock copolymer by enzymatic ring-opening polymerization of ε-caprolactone and ATRP of styrene. Polym. Bull. 54, 1-9. DOI: 10.1007/ s00289-005-0341-1.10.1007/s00289-005-0341-1Search in Google Scholar

17. Valentini, L., Macan, J., Armentano, I., Mengoni, F. & Kenny, J.M. (2006). Modifi cation of fl uorinated single-walled carbon nanotubes with aminosilane molecules. Carbon N.Y. 44, 2196-2201. DOI: 10.1016/j.carbon.2006.03.007.10.1016/j.carbon.2006.03.007Search in Google Scholar

18. Öney-Kıroğlu, C. (2014). Development and Characterization of Silica Based Super Insulation Materials. Istanbul Technical University, Istanbul, Turkey.Search in Google Scholar

19. Ozsagiroglu, E., Iyisan, B. & Avcibasi-Guvenilir, Y. (2013). Comparing the in-vitro biodegradation kinetics of commercial and synthesized polycaprolactone fi lms in different enzyme solutions. Ekoloji 22, 90-96. DOI: 10.5053/ekoloji.2013.8611.10.5053/ekoloji.2013.8611Search in Google Scholar

20. Singhal, A. (2011). The Pearson Guide to Objective Chemistry for the AIEEE. India: Dorling Kindersley.Search in Google Scholar

21. Elzein, T., Nasser-Eddine, M., Delaite, C., Bistac, S. & Dumas, P. (2004). FTIR study of polycaprolactone chain organization at interfaces. J. Coll. Interf. Sci. 273, 381-387. DOI: 10.1016/j.jcis.2004.02.001.10.1016/j.jcis.2004.02.001Search in Google Scholar

22. Kweon, H., Yoo, M.K., Park, I.K., Kim, T.H., Lee, H.C., Lee, H.S., Oh, J.S., Akaike. T. & Cho, C.S. (2003). Novel degradable polycaprolactone networks for tissue engineering. Biomaterials 24, 801-808. DOI: 10.1016/S0142-9612(02)00370-8.10.1016/S0142-9612(02)00370-8Search in Google Scholar

23. Woodruff, M.A. & Hutmacher, D.W. (2010). The return of a forgotten polymer - Polycaprolactone in the 21st century. Prog. Polym. Sci. 35, 1217-1256. DOI: 10.1016/j.progpolymsci.2010.04.002.10.1016/j.progpolymsci.2010.04.002Search in Google Scholar

24. Özsağıroğlu, E. (2011). Investigation of Effects of Reaction Mediums on Polycaprolactone Synthesis by Enzymatic Polymerization and Its Biodegradation. Istanbul Technical University, Istanbul, Turkey.Search in Google Scholar

25. Rojo, S.R., Martín, A., Calvo, E.S. & Cocero, M.J. (2009). Solubility of polycaprolactone in supercritical carbon dioxide with ethanol as cosolvent. J. Chem. Eng. Data 54, 962-965. DOI: 10.1021/je8007364.10.1021/je8007364Search in Google Scholar

26. Öztürk-Düşkünkorur, H., Pollet, E., Phalip, V., Güvenilir, Y. & Avérous, L. (2014). Lipase catalyzed synthesis of polycaprolactone and clay-based nanohybrids. Polymer 55, 1648-1655. DOI: 10.1016/j.polymer.2014.02.016. 10.1016/j.polymer.2014.02.016Search in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering