Otwarty dostęp

Adsorption kinetic, equilibrium and thermodynamic investigations of Zn(II) and Ni(II) ions removal by poly(azomethinethioamide) resin with pendent chlorobenzylidine ring


Zacytuj

1. Lombardo, M.V., Videla, M., Calvo, A., Requejo, F.G. & Soler-Illia, G.J.A.A. (2012). Aminopropyl-modified mesoporous silica SBA-15 as recovery agents of Cu(II)-sulfate solutions: adsorption efficiency, functional stability and reusability aspects. J. Hazard. Mater. 223–224, 53–62. DOI: 10.1016/j.jhazmat.2012.04.049.10.1016/j.jhazmat.2012.04.04922595542Search in Google Scholar

2. Kumar, P.S. (2013). Adsorption of Zn(II) ions from aqueous environment by surface modified Strychnos potatorum seeds, a low cost adsorbent. Pol. J. Chem. Technol. 15, 35–41. DOI: 10.2478/pjct-2013-0041.10.2478/pjct-2013-0041Search in Google Scholar

3. Awual, M.R., Yaita, T., El-Safty, S.A., Shiwaku, H., Suzuki, S. & Okamoto, Y. (2013). Copper(II) ions capturing from water using ligand modified a new type mesoporous adsorbent. Chem. Eng. J. 221, 322–330. DOI: 10.1016/j.cej.2013.02.016.10.1016/j.cej.2013.02.016Search in Google Scholar

4. Wang, Q., GaO, W., Liu, Y., Yuan, J., Xu, Z., Zeng, Q., Li, Y. & Schroder, M. (2014). Simultaneous adsorption of Cu(II) and SO42− ions by a novel silica gel functionalized with a ditopic zwitterionic Schiff base ligand. Chem. Eng. J. 250, 55–65. DOI:10.1016/j.cej.2014.03.106.10.1016/j.cej.2014.03.106Search in Google Scholar

5. Awual, M.R., Rahman, I.M.M., Yaita, T., Khaleque, M.A. & Ferdows, M. (2014). pH dependent Cu(II) and Pd(II) ions detection and removal from aqueous media by an efficient mesoporous adsorbent. Chem. Eng. J. 236, 100–109. DOI: 10.1016/j.cej.2013.09.083.10.1016/j.cej.2013.09.083Search in Google Scholar

6. Bureau of Indian Standards (BIS). (1994). Methods of sampling and test (physical and chemical) for water and waste water: Part 49 Zinc, IS No. 3025 (Part 49).Search in Google Scholar

7. Bureau of Indian Standards (BIS). (2003). Methods of sampling and test (physical and chemical) for water and waste water: Part 54 Nickel, IS No. 3025 (Part 54).Search in Google Scholar

8. Kumar, P.S., Kirthika, K. & Kumar, K.S. (2009). Bael tree leaves as a natural adsorbent for the removal of zinc(II) ions from industrial effluents. Ads. Sci. Technol. 27, 503–512. DOI: 10.1260/0263-6174.27.5.503.10.1260/0263-6174.27.5.503Search in Google Scholar

9. Kumar, P.S. & Kirthika, K. (2009). Equilibrium and kinetic study of adsorption of nickel from aqueous solution onto bael tree leaf powder. J. Eng. Sci. Technol. 4, 351–363.Search in Google Scholar

10. Kumar, P.S., Ramalingam, S., Kirupha, S.D., Murugesan, A., Vidhyadevi, T. & Sivanesan, S. (2011). Adsorption behavior of nickel(II) onto cashew nut shell: Equilibrium, thermodynamics, kinetics, mechanism and process design. Chem. Eng. J. 167, 122–131. DOI: 10.1016/j.cej.2010.12.010.10.1016/j.cej.2010.12.010Search in Google Scholar

11. SenthilKumar, P., Ramalingam, S., Abhinaya, R.V., Kirupha, S.D., Vidhyadevi, T. & Sivanesan, S. (2012). Adsorption equilibrium, thermodynamics, kinetics, mechanism and process design of zinc(II) ions onto cashew nut shell. Can. J. Chem. Eng. 90, 973–982. DOI: 10.1002/cjce.20588.10.1002/cjce.20588Search in Google Scholar

12. Kumar, P.S., Deepthi, A.S.L.S., Bharani, R. & Prabhakaran, C. (2013). Adsorption of Cu(II), Cd(II) and Ni(II) ions from aqueous solution by unmodified Strychnos potatorum seeds, Eur. J. Environ. Civ. Eng. 17, 293–314. DOI: 10.1080/19648189.2013.785983.10.1080/19648189.2013.785983Search in Google Scholar

13. Anbalagan, K., Kumar, P.S., Gayatri, K.S., Hameed, S.S., Sindhuja, M., Prabhakaran, C. & Karthikeyan, R. (2015). Removal and recovery of Ni(II) ions from synthetic waste-water using surface modified Strychnos potatorum seeds: experimental optimization and mechanism. Des. Water Treat. 53, 171–182. DOI: 10.1080/19443994.2013.837008.10.1080/19443994.2013.837008Search in Google Scholar

14. Anitha, T., Kumar, P.S. & Kumar, K.S. (2014). Binding of Zn(II) ions to chitosan–PVA blend in aqueous environment: adsorption kinetics and equilibrium studies. Environ. Prog. Sustain. Energy. 34, 15–22. DOI: 10.1002/ep.11943.10.1002/ep.11943Search in Google Scholar

15. Wang, X., Qin, Y. & Li, Z. (2006). Biosorption of zinc from aqueous solutions by rice bran: Kinetics and equilibrium studies, Sep. Sci. Tech. 41, 741–756. DOI: 10.1080/01496390500527951.10.1080/01496390500527951Search in Google Scholar

16. Mohan, D. & Singh, K.P. (2002). Single-and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse – an agricultural waste. Water Res. 36, 2304–2318. DOI: 10.1016/S0043-1354(01)00447-X.10.1016/S0043-1354(01)00447-XSearch in Google Scholar

17. Zhu, Y., Hu, J. & Wang, J. (2012). Competitive adsorption of Pb(II), Cu(II) and Zn(II) onto xanthate-modified magnetic chitosan. J. Hazard. Mater. 221–222, 155–161. DOI: 10.1016/j.jhazmat.2012.04.026.10.1016/j.jhazmat.2012.04.02622564487Search in Google Scholar

18. Annadurai, G., Jung, R.S. & Lee, D.J. (2003). Adsorption of heavy metals from water using banana and orange peels. Water Sci. Tech. 47, 185–190.10.2166/wst.2003.0049Search in Google Scholar

19. Conrad, K. & Hansen, H.C.B. (2007). Sorption of zinc and lead on coir. Bioresour. Technol. 98, 89–97. DOI: 10.1016/j.biortech.2005.11.018.10.1016/j.biortech.2005.11.01816413776Search in Google Scholar

20. King, P., Anuradha, K., Lahari, S.B., Kumar, Y.P. & Prasad, V.S.R.K. (2008). Biosorption of zinc from aqueous solution using Azadirachta indica bark: Equilibrium and kinetic Studies. J. Hazard. Mater. 152, 324–329. DOI:10.1016/j.jhazmat.2007.06.101.10.1016/j.jhazmat.2007.06.10117681426Search in Google Scholar

21. Srivastava, V.C., Mall, I.D. & Mishra, I.M. Modelling individual and competitive adsorption onto cadmium(II) and zinc(II) metal ions from aqueous solution onto bagasse fly ash. Sep. Sci. Tech. 41(12), 2685–2710. DOI: 10.1080/01496390600725687.10.1080/01496390600725687Search in Google Scholar

22. Chubar, N., Carvalho, J.M.R. & Correia, M.J.N. (2003). Cork biomass as biosorbent for Cu(II), Zn(II), Ni(II). Colloids Surf. A Physicochem. Eng. Aspects. 230, 57–65. DOI: 10.1016/j.colsurfa.2003.09.014.10.1016/j.colsurfa.2003.09.014Search in Google Scholar

23. Mohammad, M., Maitra, S., Ahmad, N., Bustam, A., Sen, T.K. & Dutta, B.K. (2010). Metal ion removal from aqueous solution using physic seed hull. J. Hazard. Mater. 179, 363–372. DOI: 10.1016/j.jhazmat.2010.03.014.10.1016/j.jhazmat.2010.03.01420362390Search in Google Scholar

24. Guo, X.Y., Zhang, A.Z. & Shan, X.Q. (2008). Adsorption of metal ions on lignin. J. Hazard. Mater. 151, 134–142. DOI: 10.1016/j.jhazmat.2007.05.065.10.1016/j.jhazmat.2007.05.065Search in Google Scholar

25. Dupont, L., Bounanda, J., Dumonceau, J. & Aplincourt, M. (2005). Biosorption of Cu(II) and Zn(II) onto a Lignocellulosic substrate extracted from wheat bran, Environ. Chem. Lett. 2, 165–168. DOI: 10.1007/s10311-004-0095-2.10.1007/s10311-004-0095-2Search in Google Scholar

26. Nie, R., Chang, X., He, Q., Hu, Z. & Li, Z. (2009). Preparation of p-tert[(dimethylamino)methyl]-calix[4]arene functionalized aminopropolysiloxane resin for selective solidphase extraction and preconcentration of metal ions. J. Hazard. Mater. 169, 203–209. DOI: 10.1016/j.jhazmat.2009.03.084.10.1016/j.jhazmat.2009.03.084Search in Google Scholar

27. Vidhyadevi, T., Murugesan, A., Kalaivani, S.S., Premkumar, M.P., Vinoth Kumar, V., Ravikumar, L. & Sivanesan, S. (2014). Evaluation of equilibrium, kinetic, and thermodynamic parameters for adsorption of Cd2+ ion and methyl red dye onto amorphous poly(azomethinethioamide) resin, Des. Water Treat. 52, 3477–3488. DOI: 10.1080/19443994.2013.801323.10.1080/19443994.2013.801323Search in Google Scholar

28. Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetensk Handl. 24, 1–39.Search in Google Scholar

29. Ho, Y.S. & McKay, G. (1999). Pseudo-second order model for sorption processes. Proc. Biochem. 34, 451–465. DOI: 10.1016/S0032-9592(98)00112-5.10.1016/S0032-9592(98)00112-5Search in Google Scholar

30. Weber, W.J. & Morris, J.C. (1963). Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 89, 31–60.10.1061/JSEDAI.0000430Search in Google Scholar

31. Boyd, G.E., Adamson, A.W. & Myers, L.S. (1947). The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics. J. Ame. Chem. Soc. 69, 2836–2848.10.1021/ja01203a066Search in Google Scholar

32. Levenspiel, O. (1999). Chemical reaction engineering, 3rd Edition, John Wiley & Sons.Search in Google Scholar

33. Lewandowski, Z. & Roe, F. (1994). Communication to the editor: diffusivity of Cu2+ in calcium alginate gel beads. Biotech. Bioeng. 43, 186–187.10.1002/bit.260430213Search in Google Scholar

34. Veglio, F., Beolchini, F. & Gasbarro, A. (1997). Biosorption of toxic metals: an equilibrium study using free cells of Arthrobacter sp. Proc. Biochem. 32, 99–105. DOI: 10.1016/S0032-9592(96)00047-7.10.1016/S0032-9592(96)00047-7Search in Google Scholar

35. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. J. Ame. Chem. Soc. 40, 1361–1403. DOI: 10.1021/ja02242a004.10.1021/ja02242a004Search in Google Scholar

36. Freundlich, H.M.F. (1906). Over the adsorption in solution. J. Phy. Chem. 57, 385–470.Search in Google Scholar

37. Temkin, M.J. & Pyzhev, V. (1940). Recent modifications to Langmuir isotherms. Acta Physicochim. URSS 12, 217–225.Search in Google Scholar

38. Dubinin, M.M. & Radushkevich, L.V. (1947). Equation of the characteristic curve of activated charcoal. Chem. Zentralbl. 1, 875–890.Search in Google Scholar

39. Singha, B. & Das, S.K. (2013). Adsorptive removal of Cu(II) from aqueous solution and industrial effluent using natural/agricultural wastes. Colloids Surf. B Biointerfaces 107, 97–106. DOI: 10.1016/j.colsurfb.2013.01.060.10.1016/j.colsurfb.2013.01.060Search in Google Scholar

40. Nomanbhay, M.S. & Palanisamy, K. (2005). Removal of heavy metal from industrial waste using chitosan coated oil palm shell charcoal. Electron. J. Biotechnol. 8, 43–53. DOI: 10.2225/vol8-issue1-fulltext-7.10.2225/vol8-issue1-fulltext-7Search in Google Scholar

41. Noh, J.S. & Schwarz, J.A. (1989). Estimation of the point of zero charge of simple oxides by mass titration. J. Coll. Inter. Sci. 130, 157–164. DOI: 10.1016/0021-9797(89)90086-6.10.1016/0021-9797(89)90086-6Search in Google Scholar

42. McKay, G., Otterburn, M.S. & Sweetney, A.G. (1981). The removal of colour from effluent using various adsorbents, III Silica rate process. Water Res. 14, 14–20. DOI:10.1016/0043-1354(80)90037-8.10.1016/0043-1354(80)90037-8Search in Google Scholar

43. Hall, K.R., Eagleton, L.C., Acrivers, A. & Vermenlem, T. (1966). Pore and solid diffusion kinetics in fixed adsorption constant pattern conditions. Ind. Eng. Chem. Res. 5, 212–223. DOI: 10.1021/i160018a011.10.1021/i160018a011Search in Google Scholar

44. Pearce, C.I., Lloyd, J.R. & Guthrie, J.T. (2003). The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigments 58, 179–196. DOI: 10.1016/S0143-7208(03)00064-0.10.1016/S0143-7208(03)00064-0Search in Google Scholar

45. Rieman, W. & Walton, H. (1970). Ion Exchange in Analytical Chemistry, International Series of Monographs in Analytical Chemistry, 38, Pergamon Press, Oxford.Search in Google Scholar

46. Helfferich, F. (1962). Ion Exchange, McGraw-Hill Book Co., New York.Search in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering