Otwarty dostęp

Pseudorandom Dynamic Test Power Signal Modeling and Electrical Energy Compressive Measurement Algorithm

 oraz    | 17 paź 2018

Zacytuj

[1] Kukuča, P., Chrapčiak, I. (2016). From smart metering to smart grid. Measurement Science Review, 16 (3), 142-148.10.1515/msr-2016-0017Search in Google Scholar

[2] Lao, K.-W., Wong, M.-C., Dai, N., Wong, C.-K., Lam, C.-S. (2015). A systematic approach to hybrid railway power conditioner design with harmonic compensation for high-speed railway. IEEE Transactions on Industrial Electronics, 62 (2), 930-942.10.1109/TIE.2014.2341577Search in Google Scholar

[3] Bernieri, A., Betta, G., Ferrigno, L., Laracca, M., Moriello, R.S.L. (2013). Electrical energy metering: Some challenges of the European Directive on Measuring Instruments (MID). Measurement, 46 (9), 3347-3354.10.1016/j.measurement.2013.06.025Search in Google Scholar

[4] Artale, G., Cataliotti, A., Cosentino, V., Cara, D.D., Nuccio, S., Tine, G. (2017). Arc fault detection method based on CZT low-frequency harmonic current analysis. IEEE Transactions on Instrumentation and Measurement, 66 (5), 2232 -2239.10.1109/TIM.2016.2627248Search in Google Scholar

[5] Wang, X.W., Chen, J.X., Yuan, R.M., Jia, X.L., Zhu, M., Jiang, Z.Y. (2017). OOK power model based dynamic error testing for smart electricity meter. Measurement Science and Technology, 28 (2), 025015.10.1088/1361-6501/aa5067Search in Google Scholar

[6] OIML. (2006). Instruments for measuring electrical quantities, IR46.Search in Google Scholar

[7] International Electrotechnical Commission (IEC). (2003). Electricity metering equipment (a.c.) - Particular requirements - Part 21: Static meters for active energy (classes 1 and 2). International Standard IEC 62053-21.Search in Google Scholar

[8] Cataliotti, A., Cosentino, V., Lipari, A., Nuccio, S. (2009). Metrological characterization and operating principle identification of static meters for reactive energy: An experimental approach under nonsinusoidal test conditions. IEEE Transactions on Instrumentation and Measurement, 58 (5), 1427-1435.10.1109/TIM.2008.2009134Search in Google Scholar

[9] Georgakopoulos, D., Wright, P.S. (2007). Exercising the dynamic range of active power meters under nonsinusoidal conditions. IEEE Transactions on Instrumentation and Measurement, 56 (2), 369-372.10.1109/TIM.2007.890596Search in Google Scholar

[10] IEEE. (2010). IEEE 1459-2010 IEEE Standard: Definitions for the measurement of electric power quantities under sinusoidal, nonsinusoidal, balanced, or unbalanced conditions.Search in Google Scholar

[11] Cataliotti, A., Cosentino, V., Nuccio, S. (2008). A virtual instrument for the measurement of IEEE Std. 1459-2000 power quantities. IEEE Transactions on Instrumentation and Measurement, 57 (1), 85-94.Search in Google Scholar

[12] Lu, Z.L., Li, M., Zhu, Z.Z., Zheng, J.Z., Wang, L., Eddy, S. (2012). Evaluation of the dynamic performance characteristic of electrical energy meters. In Conference on Precision Electromagnetic Measurements (CPEM), 1-6 July 2012, Washington, DC, USA.10.1109/CPEM.2012.6250690Search in Google Scholar

[13] Huang, H.T., Lu, Z.L., Wang, L., Liu, L.J., Jia, Z.S., Huang, Q.L., Peng, X.J., Pan, Y. (2016). Dynamical waveforms and the dynamical source for electricity meter dynamical experiment. In Conference on Precision Electromagnetic Measurements (CPEM), 10-15 July 2016, Ottawa, Canada.10.1109/CPEM.2016.7540737Search in Google Scholar

[14] Dix, C.H. (1982). Calculated performance of a digital sampling wattmeter using systematic sampling. IEE Proceedings A - Physical Science, Measurement and Instrumentation, Management and Education - Reviews, 129 (3), 172-175.10.1049/ip-a-1.1982.0028Search in Google Scholar

[15] Dai, X.Z., Tang, T., Gretsch, R. (1993). Quasisynchronous sampling algorithm and its applications I. Principle and measurement of 'average' values of periodic signal. In IEEE Instrumentation and Measurement Technology Conference, 18-20 May 1993. IEEE, 88-93.10.1109/IMTC.1993.382674Search in Google Scholar

[16] Voloshko, A.V., Kotsar, O.I., Malik, O.P. (1995). An approach to the design of digital algorithms for measuring power consumption characteristic. IEEE Transactions on Instrumentation and Measurement, 10 (2), 607-612.10.1109/61.400871Search in Google Scholar

[17] Daniel, B., Dario, P. (2016). Accuracy analysis of the sine-wave parameters estimation by means of the windowed three-parameter sine-fit algorithm. Digital Signal Processing, 50, 12-23.10.1016/j.dsp.2015.11.008Search in Google Scholar

[18] Donoho, D. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52 (4), 1289-1306.10.1109/TIT.2006.871582Search in Google Scholar

[19] Candes, E.J., Romberg, J., Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52 (2), 489-509.10.1109/TIT.2005.862083Search in Google Scholar

[20] Yang, J.B ., Liao, X.J., Yuan, X., Llull, P., Brady, D.J., Sapiro, G., Carin, L. (2015). Compressive sensing by learning a Gaussian mixture model from measurements. IEEE Transactions on Image Processing, 24 (1), 106-119.10.1109/TIP.2014.236572025361508Search in Google Scholar

[21] Zahedi, R., Krakow, L.W., Chong, E.K.P., Pezeshki, A. (2013). Adaptive compressive measurement design using approximate dynamic programming. In American Control Conference (ACC), 17-19 June, 2013, Washington, DC, USA, 2442-2447.10.1109/ACC.2013.6580200Search in Google Scholar

[22] Bertocco, M., Frigo, G., Narduzzi, C., Tramarin, F. (2014). Resolution enhancement by compressive sensing in power quality and phasor measurement. IEEE Transactions on Instrumentation and Measurement, 63 (10), 2358-2367.10.1109/TIM.2014.2321465Search in Google Scholar

[23] Du, Z.H., Chen, X.F., Zhang, H., Miao, H.H., Guo, Y.J., Yang, B.Y. (2016). Feature identification with compressive measurements for machine fault diagnosis. IEEE Transactions on Instrumentation and Measurement, 65 (5), 977-987.10.1109/TIM.2016.2521223Search in Google Scholar

[24] Yang, G., Tan, V.Y.F., Ho, C.K., Ting, S.H., Guan, Y.L. (2013). Wireless compressive sensing for energy harvesting sensor nodes. IEEE Transactions on Signal Processing, 61 (18), 4491-4505.10.1109/TSP.2013.2271480Search in Google Scholar

[25] Atia, G.K. (2015). Change detection with compressive measurements. IEEE Signal Processing Letters, 22 (2), 182-186.10.1109/LSP.2014.2352116Search in Google Scholar

[26] Mendelson, S., Pajor, A., Tomczak-Jaegermann, N. (2008). Uniform uncertainty principle for Bernoulli and subgaussian ensembles. Constructive Approximation, 28 (3), 277-289.10.1007/s00365-007-9005-8Search in Google Scholar

[27] Haupt, J., Bajwa, W., Raz, G., Nowak, R. (2010). Toeplitz compressed sensing matrices with applications to sparse channel estimation. IEEE Transactions on Information Theory, 56 (11), 5862-5875.10.1109/TIT.2010.2070191Search in Google Scholar

[28] Candes, E., Romberg, J. (2007). Sparsity and incoherence in compressive sampling. Inverse Problems, 23 (3), 969-985.10.1088/0266-5611/23/3/008Search in Google Scholar

[29] Yan, W.J., Wang, Q., Shen, Y. (2014). Shrinkage- Based alternating projection algorithm for efficient measurement matrix construction in compressive sensing. IEEE Transactions on Instrumentation and Measurement, 63 (5), 1073-1084.10.1109/TIM.2014.2298271Search in Google Scholar

[30] Yu, Y., Petropulu, A.P., Poor, H.V. (2011). Measurement matrix design for compressive sensing- based MIMO radar. IEEE Transactions on Signal Processing, 59 (11), 5338-5352.10.1109/TSP.2011.2162328Search in Google Scholar

[31] Li, G., Zhu, Z.H., Yang, D.H., Chang, L.P., Bai, H. (2013). On projection matrix optimization for compressive sensing systems. IEEE Transactions on Signal Processing, 61 (11), 2887-2898.10.1109/TSP.2013.2253776Search in Google Scholar

[32] Davenport, M., Boufounos, P., Wakin, M., Baraniuk, R. (2010). Signal processing with compressive measurements. IEEE Journal of Selected Topics in Signal Processing, 4 (2), 445-460.10.1109/JSTSP.2009.2039178Search in Google Scholar

[33] Park, J.Y., Wakin, M., Gilbert, A. (2014). Modal analysis with compressive measurements. IEEE Transactions on Signal Processing, 62 (7), 1655-1670.10.1109/TSP.2014.2302736Search in Google Scholar

[34] Agrež, D. (2010). Estimation and tracking of the power quality disturbances in the frequency domain. Measurement Science Review, 10 (6), 189-194.10.2478/v10048-010-0032-4Search in Google Scholar

[35] Alizadeh, M., Scaglione, A., Applebaum, A., Kesidis, G., Levitt, K. (2015). Reduced-Order load models for large populations of flexible appliances. IEEE Transactions on Power Systems, 30 (4), 1758-1774.10.1109/TPWRS.2014.2354345Search in Google Scholar

[36] Kabalci, E., Kabalci, Y. (2013). A measurement and power line communication system design for renewable smart grids. Measurement Science Review, 13 (5), 248-252.10.2478/msr-2013-0037Search in Google Scholar

[37] Duy, T.N. (2015). Modeling load uncertainty in distribution network monitoring. IEEE Transactions on Power Systems, 30 (5), 2321-2328.Search in Google Scholar

[38] Petersen, H.M., Koch, R.G., Swart, P.H., Heerden, R.V. (1995). Modeling arc furnace flicker and investigating compensation techniques. In Industry Applications Conference, 8-12 October, 1995. IEEE, 1733-1740.Search in Google Scholar

[39] Yang, S.B., Wu, M.L., Yao, X., Jiang, J.C. (2015). Load modeling and identification based on ant colony algorithms for EV charging stations. IEEE Transactions on Power Systems, 30 (4), 1997-2003.10.1109/TPWRS.2014.2352263Search in Google Scholar

[40] Zepernick, H.J., Finger, A. (2005). Pseudo Random Signal Processing: Theory and Application. Wiley.10.1002/9780470866597Search in Google Scholar

eISSN:
1335-8871
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing