Otwarty dostęp

Electrochemical Corrosion Characteristics of High Strength Low Alloy Domex 700 Steel After Mechanical Surface Treatment in Chloride Environment


Zacytuj

1. Pastorek, F.; Borko, K.; Fintová, S.; Kajánek, D.; Hadzima, B. Effect of surface pretreatment on quality and electrochemical corrosion properties of manganese phosphate on S355J2 HSLA steel. Coatings 2016, 6 (4), 46.10.3390/coatings6040046Search in Google Scholar

2. Crouch, G.; Cimpoeru, S., J.; Li, H.; Shanmugam, D. The Science of Armour Materials, Chapter 2 - Armour steels, pp. 55-115. Victoria (in Australia), 2017. ISBN: 978-0-08- 101002-0.10.1016/B978-0-08-100704-4.00002-5Search in Google Scholar

3. Mohrbacher, H. Green and Sustainable Manufacturing of Advanced Material, Chapter 6 - High-Performance Steels for Sustainable Manufacturing of Vehicles, pp. 135-163. Schilde (in Belgium), 2016. ISBN: 978-0-12-411497-5.10.1016/B978-0-12-411497-5.00006-0Search in Google Scholar

4. Smallman, R., E.; Ngan, W., H., A. Modern Physical Metallurgy (8th Edition), Chapter 14 - Selected Alloys, pp. 529-569. Waltham (in USA), 2014. ISBN: 978-0-08-098204-5.10.1016/B978-0-08-098204-5.00014-6Search in Google Scholar

5. Hilditch, T., B.; de Souza, T.; Hodgson, D., P. Welding and Joining of Advanced High Strength Steels (AHSS), Chapter 2 - Properties and automotive applications of advanced high-strength steels (AHSS), pp. 9-28. Victoria (in Australia), 2015. ISBN: 978-0-85709-436-0.10.1016/B978-0-85709-436-0.00002-3Search in Google Scholar

6. Canale, F., C., L.; Vatavuk, J.; Totten, E., G. Comprehensive Materials Processing, Chapter 12.02 - Introduction to Steel Heat Treatment, pp. 3-37. Portland (in USA), 2014. ISBN: 978-0-12-803581-8.10.1016/B978-0-08-096532-1.01202-4Search in Google Scholar

7. Militzer, M. Comprehensive Materials Processing, Chapter 1.10 - Thermomechanical Processed Steels, pp. 191-216. Vancouver (in Canada), 2014. ISBN: 978-0-12-803581-8.10.1016/B978-0-08-096532-1.00115-1Search in Google Scholar

8. Banerjee, K., M. Comprehensive Materials Finishing, Chapter 2.8 - Heat Treatment of Commercial Steels for Engineering Applications, pp. 180-213. Jaipur (in India), 2017. ISBN: 978-0-12-803581-8.10.1016/B978-0-12-803581-8.09190-6Search in Google Scholar

9. Han, S., H.; Han, J., W.; Nam, Y., Y.; Cho, H., I. Fatigue life improvement for cruciform welded joint by mechanical surface treatment using hammer peening and ultrasonic nanocrystal surface modification. Fatigue and Fracture Engineering Materials and Structures 2009, 32, 573-579.Search in Google Scholar

10. Zhongqiu, F.; Bohai, J.; Xiangming, K.; Xiang, Ch. Grinding treatment effect on rib-to-roof weld fatigue performance of steel bridge decks. Journal of Constructional Steel Research 2017, 129, 163-170.Search in Google Scholar

11. Neslušan, M.; Mičieta, B.; Mičietová, A.; Čiliková, M.; Mrkvica, I. Detection of tool breakage during hard turning through acoustic emission at low removal rates. Measurement 2015, 70, 1-13.Search in Google Scholar

12. Mhaede, M.; Pastorek, F.; Hadzima, B. Influence of shot peening on corrosion properties of biocompatible magnesium alloy AZ31 coated by dicalcium phosphate dihydrate (DCPD). Materials Science and Engineering: C 2014, 39, 330-335.Search in Google Scholar

13. Trško, L.; Guagliano, M.; Bokůvka, O.; Nový, F. Fatigue life of AW 7075 Aluminium Alloy after severe shote peening treatment with different intensities. Procedia Engineering 2014, 74, 246-252.Search in Google Scholar

14. Miková, K.; Bagherifard, S.; Bokůvka, O.; Guagliano, M.; Trško, L. Fatigue behavior of X70 microalloyed steel after severe shot peening. International Journal of Fagitue 2013, 55, 33-42.10.1016/j.ijfatigue.2013.04.021Open DOISearch in Google Scholar

15. Trško, L.; Bokůvka, O.; Nový, F.; Guagliano, M. Effect of severe shot peening on ultra-high-cycle fatigue of a lowalloy steel. Mareials & Design 2014, 57, 103-113.Search in Google Scholar

16. Dieng, L.; Amine, D; Falaise, Y.; Chataigner, S. Parametric of the finite modeling of shot peening on welded joints. Journal of Constructional Steel Research 2017, 130, 234-347.Search in Google Scholar

17. Li, X.; Zhang, J.; Wang, Y.; Ma, M.; Shen, S.; Song, X. The dual role of shot peening in hydrogen-assisted cracking of PSB1080 high strength steel. Mareials & Design 2016, 110, 602-615.Search in Google Scholar

18. Závodská, D.; Guagliano, M.; Bokůvka, O.; Trško, L. Fatigue resistance of low alloy steel after shot peening. Materials today: Proceedings 2016, 3, 1220-1225.10.1016/j.matpr.2016.03.002Open DOISearch in Google Scholar

19. Frankel, G., S. Electrochemical techniques in corrosion: status, limitations, and needs. J. ASTM International 2008, 5, 3-40.10.1520/JAI101241Search in Google Scholar

20. Ariza, E.; Rocha, L., A. Evaluation of corrosion resistance of multi-layered Ti/glass-ceramic interfaces by electrochemical impedance spectroscopy. Materials Science Forum 2005,. 492-493, 189-194.10.4028/www.scientific.net/MSF.492-493.189Search in Google Scholar

21. Han, X., G.; Zhu, F.; Zhu, X., P.; Lei, M., K.; Xu, J., J. Electrochemical corrosion behavior of modified MAO film on magnesium alloy AZ31 irradiated by high-intensity pulsed ion beam. Surface Coatings Technology 2013, 228, 164-170.Search in Google Scholar

22. Skublova, L.; Hadzima, B.; Borbas, L.; Vitosova, M. The influence of temperature on corrosion properties of titanium and stainless steel biomaterials. Materials Engineering 2008, 15, 18-22.Search in Google Scholar

eISSN:
1804-1213
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Chemical Engineering, Materials Sciences, Ceramics and Glass