Otwarty dostęp

Micro RNAs: an arguable appraisal in medicine


Zacytuj

Abdalla MA, Haj-Ahmad Y. Promising Candidate Urinary MicroRNA Biomarkers for the Early Detection of Hepatocellular Carcinoma among High-Risk Hepatitis C Virus Egyptian Patients. J Cancer 3, 19-31, 2012. http://dx.doi.org/10.7150/jca.3.1910.7150/jca.3.19324560522211142Search in Google Scholar

Adachi T, Nakanishi M, Otsuka Y, Nishimura K, Hirokawa G, Goto Y, Nonogi H, Iwai N. Plasma microRNA 499 as a biomarker of acute myocardial infarction. Clin Chem 56, 1183-1185, 2010. http://dx.doi.org/10.1373/clinchem.2010.14412110.1373/clinchem.2010.14412120395621Search in Google Scholar

Adams BD, Furneaux H, White BA. Th e micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor- alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. Mol Endocrinol 21, 1132-1147, 2007. http://dx.doi.org/10.1210/me.2007-002210.1210/me.2007-002217312270Search in Google Scholar

Aguado-Fraile E, Ramos E, Conde E, Rodriguez M, Martin-Gomez L, Lietor A, Candela A, Ponte B, Lia-o F, Garcia- Bermejo ML. A Pilot Study Identifying a Set of microRNAs As Precise Diagnostic Biomarkers of Acute Kidney Injury. PLoS One 10, e0127175, 2015. http://dx.doi.org/10.1371/journal.pone.012717510.1371/journal.pone.0127175446958426079930Search in Google Scholar

Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell PS, Bennett CF, Pogosova-Agadjanyan EL, Stirewalt DL, Tait JF, Tewari M. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A 108, 5003-5008, 2011. http://dx.doi.org/10.1073/pnas.101905510810.1073/pnas.1019055108306432421383194Search in Google Scholar

Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, Allgayer H. MicroRNA-21 (miR-21) posttranscriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27, 2128-2136, 2008. http://dx.doi.org/10.1038/sj.onc.121085610.1038/sj.onc.121085617968323Search in Google Scholar

Baier SR, Nguyen C, Xie F, Wood JR, Zempleni J. MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and mouse livers. J Nutr 144, 1495-1500, 2014. http://dx.doi.org/10.3945/jn.114.19643610.3945/jn.114.196436416247325122645Search in Google Scholar

Basati G, Razavi AE, Pakzad I, Malayeri FA. Circulating levels of the miRNAs, miR-194, and miR-29b, as clinically useful biomarkers for colorectal cancer. Tumour Biol [Epub ahead of print], 2015.10.1007/s13277-015-3967-026318304Search in Google Scholar

Brase JC, Johannes M, Schlomm T, Falth M, Haese A, Steuber T, Beissbarth T, Kuner R, Sultmann H. Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer 128, 608-616, 2011. http://dx.doi.org/10.1002/ijc.2537610.1002/ijc.2537620473869Search in Google Scholar

Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, Li Q, Li X, Wang W, Zhang Y, Wang J, Jiang X, Xiang Y, Xu C, Zheng P, Zhang J, Li R, Zhang H, Shang X, Gong T, Ning G, Wang J, Zen K, Zhang J, Zhang CY. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18, 997-1006, 2008. http://dx.doi.org/10.1038/cr.2008.28210.1038/cr.2008.28218766170Search in Google Scholar

Cheng H, Zhang L, Cogdell DE, Zheng H, Schetter AJ, Nykter M, Harris CC, Chen K, Hamilton SR, Zhang W. Circulating plasma MiR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS One 6, e17745, 2011. http://dx.doi.org/10.1371/journal.pone.001774510.1371/journal.pone.0017745306016521445232Search in Google Scholar

Chim SS, Shing TK, Hung EC, Leung TY, Lau TK, Chiu RW, Lo YM. Detection and characterization of placental microRNAs in maternal plasma. Clin Chem 54, 482-490, 2008. http://dx.doi.org/10.1373/clinchem.2007.09797210.1373/clinchem.2007.09797218218722Search in Google Scholar

Corbin R, Olsson-Carter K, Slack F. Th e role of microRNAs in synaptic development and function. BMB Rep 42, 131-135, 2009. http://dx.doi.org/10.5483/BMBRep.2009.42.3.13110.5483/BMBRep.2009.42.3.131431549719335998Search in Google Scholar

Cottonham CL, Kaneko S, Xu L. miR-21 and miR-31 converge on TIAM1 to regulate migration and invasion of colon carcinoma cells. J Biol Chem 285, 35293-35302, 2010. http://dx.doi.org/10.1074/jbc.M110.16006910.1074/jbc.M110.160069297515320826792Search in Google Scholar

Creighton CJ, Fountain MD, Yu Z, Nagaraja AK, Zhu H, Khan M, Olokpa E, Zariff A, Gunaratne PH, Matzuk MM, Anderson ML. Molecular Profiling Uncovers a p53-Associated Role for MicroRNA-31 in Inhibiting the Proliferation of Serous Ovarian Carcinomas and Other Cancers. Cancer Res 70, 1906−1915, 2010. http://dx.doi.org/10.1158/0008-5472.CAN-09-387510.1158/0008-5472.CAN-09-3875283110220179198Search in Google Scholar

Daige CL, Wiggins JF, Priddy L, Nelligan-Davis T, Zhao J, Brown D. Systemic delivery of a miR34a mimic as a potential therapeutic for liver cancer. Mol. Cancer Th er 13, 2352-2360, 2014. http://dx.doi.org/10.1158/1535-7163.MCT-14-020910.1158/1535-7163.MCT-14-020925053820Search in Google Scholar

Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464, 1067-1070, 2010. http://dx.doi.org/10.1038/nature0895610.1038/nature08956285540620305636Search in Google Scholar

Deng Y, Wang CC, Choy KW, Du Q, Chen J, Wang Q, Li L, Chung TK, Tang T. Th erapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies. Genes 538, 217−227, 2014. http://dx.doi.org/10.1016/j.gene.2013.12.01910.1016/j.gene.2013.12.01924406620Search in Google Scholar

Devalliere J, Chang WG, Andrejecsk JW, Abrahimi P, Cheng CJ, Jane-wit D, Saltzman WM, Pober JS. Sustained delivery of proangiogenic microRNA-132 by nanoparticle transfection improves endothelial cell transplantation. FASEB J 28, 908−922, 2014. http://dx.doi.org/10.1096/fj.13-23852710.1096/fj.13-238527389864024221087Search in Google Scholar

DeVincenzo J, Lambkin-Williams R, Wilkinson T, Cehelsky J, Nochur S, Walsh E, Meyers R, Gollob J, Vaishnaw A. A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. Proc Natl Acad Sci U S A 107, 8800, 2010. http://dx.doi.org/10.1073/pnas.091218610710.1073/pnas.0912186107288936520421463Search in Google Scholar

Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494−498, 2001. http://dx.doi.org/10.1038/3507810710.1038/3507810711373684Search in Google Scholar

Escrevente C, Keller S, Altevogt P, Costa J. Interaction and uptake of exosomes by ovarian cancer cells. BMC Cancer 11, 108, 2011. http://dx.doi.org/10.1186/1471-2407-11-10810.1186/1471-2407-11-108307294921439085Search in Google Scholar

Etheridge A, Lee I, Hood L, Galas D, Wang K. Extracellular microRNA: a new source of biomarkers. Mutat Res 717, 85−90, 2011. http://dx.doi.org/10.1016/j.mrfmmm.2011.03.00410.1016/j.mrfmmm.2011.03.004319903521402084Search in Google Scholar

Fang Z, Tang J, Bai Y, Lin H, You H, Jin H, Lin L, You P, Li J, Dai Z, Liang X, Su Y, Hu Q, Wang F, Zhang ZY. Plasma levels of microRNA-24, microRNA-320a, and microRNA-423-5p are potential biomarkers for colorectal carcinoma. J Exp Clin Cancer Res 34, 86, 2015. http://dx.doi.org/10.1186/s13046-015-0198-610.1186/s13046-015-0198-6454635826297223Search in Google Scholar

Ferreira R, Santos T, Amar A, Gong A, Chen TC, Tahara SM, Giannotta SL, Hofman FM. Argonaute-2 promotes miR-18a entry in human brain endothelial cells. J Am Heart Assoc 3, e000968, 2014. http://dx.doi.org/10.1161/JAHA.114.00096810.1161/JAHA.114.000968430908924837588Search in Google Scholar

Garber KB, Visootsak J, Warren ST. Fragile X syndrome. Eur J Hum Genet 16, 666−672, 2008. http://dx.doi.org/10.1038/ejhg.2008.6110.1038/ejhg.2008.61436915018398441Search in Google Scholar

Gavrilov K, Saltzman WM. Therapeutic siRNA: principles, challenges, and strategies. Yale J Biol Med 85, 187−200, 2012.Search in Google Scholar

Hanke M, Hoefig K, Merz H, Feller AC, Kausch I, Jocham D, Warnecke JM, Sczakiel G. A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol 28, 655-661, 2009. http://dx.doi.org/10.1016/j.urolonc.2009.01.027 10.1016/j.urolonc.2009.01.02719375957Search in Google Scholar

Harfe BD, McManus MT, Mansfield JH, Hornstein E, Tabin CJ. Th e RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc Natl Acad Sci U S A 102, 10898-10903, 2005. http://dx.doi.org/10.1073/pnas.050483410210.1073/pnas.0504834102118245416040801Search in Google Scholar

Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci USA 105, 1516-1521, 2008. http://dx.doi.org/10.1073/pnas.070749310510.1073/pnas.0707493105223417618227515Search in Google Scholar

Hatley ME, Patrick DM, Garcia MR, Richardson JA, Bassel-Duby R, van Rooij E, Olson EN. Modulation of K-Rasdependent lung tumorigenesis by MicroRNA-21. Cancer Cell 18, 282−293, 2010. http://dx.doi.org/10.1016/j.ccr.2010.08.01310.1016/j.ccr.2010.08.013297166620832755Search in Google Scholar

Hebert SS, Horre K, Nicolai L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN, Kauppinen S, Delacourte A, De Strooper B. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci U S A 105, 6415−6420, 2008. http://dx.doi.org/10.1073/pnas.071026310510.1073/pnas.0710263105235978918434550Search in Google Scholar

Hornby RJ, Starkey Lewis P, Dear J, Goldring C, Park BK. MicroRNAs as potential circulating biomarkers of druginduced liver injury: key current and future issues for translation to humans. Expert Rev Clin Pharmacol 7, 349−362, 2014. http://dx.doi.org/10.1586/17512433.2014.90420110.1586/17512433.2014.90420124694030Search in Google Scholar

Hrustincova A, Votavova H, Dostalova Merkerova M. Circulating MicroRNAs: Methodological Aspects in Detection of Th ese Biomarkers.Folia Biologica (Praha) 61, 203−218, 2015.Search in Google Scholar

Hydbring P, Badalian-Very G. Clinical applications of microRNAs. F1000Research 2, 136, 2013. http://dx.doi.org/10.12688/f1000research.2-136.v110.12688/f1000research.2-136.v1Search in Google Scholar

Ishizuka A, Siomi MC,Siomi H. A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev 16, 2497−2508, 2002. http://dx.doi.org/10.1101/gad.102200210.1101/gad.102200218745512368261Search in Google Scholar

Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A, Zhou Y, Persson R, King BD, Kauppinen S, Levin AA, Hodges MR. Treatment of HCV infection by targeting microRNA. N Engl J Med 368, 1685-1694, 2013. http://dx.doi.org/10.1056/NEJMoa120902610.1056/NEJMoa120902623534542Search in Google Scholar

Ji R, Cheng Y, Yue J, Yang J, Liu X, Chen H, Dean DB, Zhang C. MicroRNA expression signature and antisensemediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res 100, 1579-1588, 2007. http://dx.doi.org/10.1161/CIRCRESAHA.106.14198610.1161/CIRCRESAHA.106.14198617478730Search in Google Scholar

Ji X, Takahashi R, Hiura Y, Hirokawa G, Fukushima Y, Iwai N. Plasma miR-208 as a biomarker of myocardial injury. Clin Chem 55, 1944-1949, 2009. http://dx.doi.org/10.1373/clinchem.2009.12531010.1373/clinchem.2009.12531019696117Search in Google Scholar

Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ. RAS is regulated by the let-7 microRNA family. Cell 120, 635−647, 2005. http://dx.doi.org/10.1016/j.cell.2005.01.01410.1016/j.cell.2005.01.01415766527Search in Google Scholar

Jose AM. Movement of regulatory RNA between animal cells. Genesis 53, 395−416, 2015. http://dx.doi.org/10.1002/dvg.2287110.1002/dvg.22871491534826138457Search in Google Scholar

Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T, Livingston DM, Rajewsky K. Dicerdeficient mouse embryonic stem cells are defective in diff erentiation and centromeric silencing. Genes Dev 19, 489-501, 2005. http://dx.doi.org/10.1101/gad.124850510.1101/gad.124850554894915713842Search in Google Scholar

Karolina DS, Tavintharan S, Armugam A, Sepramaniam S, Pek SL, Wong MT, Lim SC, Sum CF, Jeyaseelan K. Circulating miRNA profiles in patients with metabolic syndrome. J Clin Endocrinol Metab 97, E2271-E2276, 2012. http://dx.doi.org/10.1210/jc.2012-199610.1210/jc.2012-199623032062Search in Google Scholar

Karube Y, Tanaka H, Osada H, Tomida S, Tatematsu Y, Yanagisawa K, Yatabe Y, Takamizawa J, Miyoshi S, Mitsudomi T, Takahashi T. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci 96, 111-115, 2005. http://dx.doi.org/10.1111/j.1349Search in Google Scholar

Katsuda T, Kosaka N, Ochiya T. Th e roles of extracellular vesicles in cancer biology: toward the development of novel cancer biomarkers. Proteomics 14, 412−425, 2014. http://dx.doi.org/10.1002/pmic.20130038910.1002/pmic.20130038924339442Search in Google Scholar

Kim HS, Lee KS, Bae HJ, Eun JW, Shen Q, Park SJ, Shin WC, Yang HD, Park M, Park WS, Kang YK, Nam SW. MicroRNA-31 functions as a tumor suppressor by regulating cell cycle and epithelial-mesenchymal transition regulatory proteins in liver cancer. Oncotarget 6, 8089-8102, 2015. http://dx.doi.org/10.18632/oncotarget.351210.18632/oncotarget.3512448073725797269Search in Google Scholar

Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyioukos C, Mourelatos Z, Hatzigeorgiou A. A combined computational-experimental approach predicts human microRNA targets. Genes Dev 18, 1165−1178, 2004. http://dx.doi.org/10.1101/gad.118470410.1101/gad.118470441564115131085Search in Google Scholar

Koldehoff M, Steckel NK, Beelen DW, Elmaagacli AH. Th erapeutic application of small interfering RNA directed against bcr-abl transcripts to a patient with imatinib-resistant chronic myeloid leukaemia. Clin Exp Med 7, 47−55, 2007. http://dx.doi.org/10.1007/s10238-007-0125-z 10.1007/s10238-007-0125-z17609876Search in Google Scholar

Kole AJ, Swahari V, Hammond SM, Deshmukh M. miR-29b is activated during neuronal maturation and targets BH3-only genes to restrict apoptosis. Genes Dev 25, 125−130, 2011. http://dx.doi.org/10.1101/gad.197541110.1101/gad.1975411302225821245165Search in Google Scholar

Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285, 17442−17452, 2010. http://dx.doi.org/10.1074/jbc.M110.10782110.1074/jbc.M110.107821287850820353945Search in Google Scholar

Koumangoye RB, Sakwe AM, Goodwin JS, Patel T, Ochieng J. Detachment of breast tumor cells induces rapid secretion of exosomes which subsequently mediate cellular adhesion and spreading. PLoS One 6, e24234, 2011. http://dx.doi.org/10.1371/journal.pone.002423410.1371/journal.pone.0024234316782721915303Search in Google Scholar

Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res 101, 59-68, 2007. http://dx.doi.org/10.1161/CIRCRESAHA.107.15391610.1161/CIRCRESAHA.107.15391617540974Search in Google Scholar

Kumar MS, Erkeland SJ, Pester RE, Chen CY, Ebert MS, Sharp PA, Jacks T. Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci U S A 105, 3903−3908, 2008. http://dx.doi.org/10.1073/pnas.071232110510.1073/pnas.0712321105226882618308936Search in Google Scholar

Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol 12, 735-739, 2002. http://dx.doi.org/10.1016/S0960-9822(02)00809-610.1016/S0960-9822(02)00809-6Search in Google Scholar

Lam JKW, Chow MYT, Zhang Y, Leung SWS. siRNA Versus miRNA as Therapeutics for Gene Silencing. Mol Th er Nucleic Acids 4, e252, 2015. http://dx.doi.org/10.1038/mtna.2015.2310.1038/mtna.2015.23Search in Google Scholar

Lee RC, Feinbaum RL, Ambros V. Th e C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854, 1993. http://dx.doi.org/10.1016/0092-8674(93)90529-Y 10.1016/0092-8674(93)90529-YSearch in Google Scholar

Lee KH, Kim SH, Lee HR, Kim W, Kim DY, Shin JC, Yoo SH, Kim KT. MicroRNA-185 oscillation controls circadian amplitude of mouse Cryptochrome 1 via translational regulation. Mol Biol Cell 24, 2248-2255, 2013. http://dx.doi.org/10.1091/mbc.E12-12-084910.1091/mbc.e12-12-0849370873023699394Search in Google Scholar

Li Y, Fan L, Liu S, Liu W, Zhang H, Zhou T, Wu D, Yang P, Shen L, Chen J, Jin Y. Th e promotion of bone regeneration through positive regulation of angiogenic-osteogenic coupling using microRNA-26a. Biomaterials. 34, 5048-5058, 2013. http://dx.doi.org/10.1016/j.biomaterials.2013.03.05210.1016/j.biomaterials.2013.03.05223578559Search in Google Scholar

Li H, Cheng Wu C, Aramayo R, Sachs MS, Harlowa ML. Synaptic vesicles contain small ribonucleic acids (sRNAs) including transfer RNA fragments (trfRNA) and microRNAs (miRNA). Sci Rep 5, 14918, 2015. http://dx.doi.org/10.1038/srep1491810.1038/srep14918459735926446566Search in Google Scholar

Liang G, Zhu Y, Sun B, Shao Y, Jing A, Wang J, Xiao Z. Assessing the survival of exogenous plant microRNA in mice. Food Sci Nutr 2, 380−388, 2014. http://dx.doi.org/10.1002/fsn3.11310.1002/fsn3.113422183625473495Search in Google Scholar

Liu WH, Yeh SH, Lu CC, Yu SL, Chen HY, Lin CY, Chen DS, Chen PJ. MicroRNA-18a prevents estrogen receptoralpha expression, promoting proliferation of hepatocellular carcinoma cells. Gastroenterology 136, 683−693, 2009. http://dx.doi.org/10.1053/j.gastro.2008.10.02910.1053/j.gastro.2008.10.02919027010Search in Google Scholar

Liu DZ, Tian Y, Ander BP, Xu H, Stamova BS, Zhan X, Turner RJ, Jickling G, Sharp FR. Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab 30, 92-101, 2010a. http://dx.doi.org/10.1038/jcbfm.2009.18610.1038/jcbfm.2009.186294908919724284Search in Google Scholar

Liu X, Sempere LF, Ouyang H, Memoli VA, Andrew AS, Luo Y, Demidenko E, Korc M, Shi W, Preis M, Dragnev KH, Li H, Direnzo J, Bak M, Freemantle SJ, Kauppinen S, Dmitrovsky E. MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. J Clin Invest 120, 1298−309, 2010b. http://dx.doi.org/10.1172/JCI3956610.1172/JCI39566284604120237410Search in Google Scholar

Liu M, Zhi Q, Wang W, Zhang Q, Fang T, Ma Q. Up-regulation of miR-592 correlates with tumor progression and poor prognosis in patients with colorectal cancer. Biomed Pharmacother 69, 214−220, 2015. http://dx.doi.org/10.1016/j.biopha.2014.12.00110.1016/j.biopha.2014.12.00125661360Search in Google Scholar

Long G, Wang F, Li H, Yin Z, Sandip C, Lou Y, Wang Y, Chen C, Wang DW. Circulating miR-30a, miR-126 and let-7b as biomarker for ischemic stroke in humans. BMC Neurol 13, 178, 2013. http://dx.doi.org/10.1186/1471-2377-13-17810.1186/1471-2377-13-178384058424237608Search in Google Scholar

Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR. MicroRNA expression profiles classify human cancers. Nature 435, 834−838, 2005. http://dx.doi.org/10.1038/nature0370210.1038/nature0370215944708Search in Google Scholar

Lu J, Guo S, Ebert BL, Zhang H, Peng X, Bosco J, Pretz J, Schlanger R, Wang JY, Mak RH, Dombkowski DM, Preffer FI, Scadden DT, Golub TR. MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev Cell 14, 843−853, 2008. http://dx.doi.org/10.1016/j.devcel.2008.03.01210.1016/j.devcel.2008.03.012268878918539114Search in Google Scholar

Luo SS, Ishibashi O, Ishikawa G, Ishikawa T, Katayama A, Mishima T, Takizawa T, Shigihara T, Goto T, Izumi A, Ohkuchi A, Matsubara S, Takeshita T,Takizawa T. Human villous trophoblasts express and secrete placenta specific microRNAs into maternal circulation via exosomes. Biol Reprod 81, 717−729, 2009. http://dx.doi.org/10.1095/biolreprod.108.075481 10.1095/biolreprod.108.07548119494253Search in Google Scholar

Luo H, Zou J, Dong Z, Zeng Q, Wu D, Liu L. Up-regulated miR-17 promotes cell proliferation, tumour growth and cell cycle progression by targeting the RND3 tumour suppressor gene in colorectal carcinoma. Biochem J 442, 311−321, 2012. http://dx.doi.org/10.1042/BJ2011151710.1042/BJ2011151722132820Search in Google Scholar

Ma R, Jiang T, Kang X. Circulating microRNAs in cancer: origin, function and application. J Exp Clin Cancer Res 31, 38, 2012. http://dx.doi.org/10.1186/1756-9966-31-3810.1186/1756-9966-31-38343199122546315Search in Google Scholar

Mahn R, Heukamp LC, Rogenhofer S, von Ruecker A, Muller SC, Ellinger J. Circulating microRNAs (miRNA) in serum of patients with prostate cancer. Urology 77, 1265.e9−16, 2011. http://dx.doi.org/10.1016/j.urology.2011.01.02010.1016/j.urology.2011.01.02021539977Search in Google Scholar

Makeyev EV, Zhang J, Carrasco MA, Maniatis T. Th e MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNAsplicing. Mol Cell 27, 435−448, 2007. http://dx.doi.org/10.1016/j.molcel.2007.07.01510.1016/j.molcel.2007.07.015313945617679093Search in Google Scholar

Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105, 10513-10518, 2008. http://dx.doi.org/10.1073/pnas.080454910510.1073/pnas.0804549105249247218663219Search in Google Scholar

Mogilyansky E, Rigoutsos I. The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Diff er 20, 1603−1614, 2013. http://dx.doi.org/10.1038/cdd.2013.12510.1038/cdd.2013.125382459124212931Search in Google Scholar

Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles 3, eCollection, 2014. http://dx.doi.org/10.3402/jev.v3.2464110.3402/jev.v3.24641412282125143819Search in Google Scholar

Murata K, Furu M, Yoshitomi H, Ishikawa M, Shibuya H, Hashimoto M, Imura Y, Fujii T, Ito H, Mimori T, Matsuda S. Comprehensive microRNA Analysis Identifies miR-24 and miR-125a-5p as Plasma Biomarkers for Rheumatoid Arthritis. PLoS One 8, e69118, 2013. http://dx.doi.org/10.1371/journal.pone.006911810.1371/journal.pone.0069118371546523874885Search in Google Scholar

Nagel R, Clijsters L, Agami R. The miRNA-192/194 cluster regulates the Period gene family and the circadian clock. FEBS J 276, 5447-5455, 2009. http://dx.doi.org/10.1111/j.1742-4658.2009.07229.x 10.1111/j.1742-4658.2009.07229.x19682069Search in Google Scholar

Nielsen LB, Wang C, Sorensen K, Bang-Berthelsen CH, Hansen L, Andersen ML, Hougaard P, Juul A, Zhang CY, Pociot F, Mortensen HB. Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression. Exp Diabetes Res 2012, 896362, 2012. http://dx.doi.org/10.1155/2012/89636210.1155/2012/896362339860622829805Search in Google Scholar

Ohshima K, Inoue K, Fujiwara A, Hatakeyama K, Kanto K, Watanabe Y, Muramatsu K, Fukuda Y, Ogura S, Yamaguchi K, Mochizuki T. Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS One 5, e13247, 2010. http://dx.doi.org/10.1371/journal.pone.001324710.1371/journal.pone.0013247295191220949044Search in Google Scholar

Pang J, Xiong H, Yang H, Ou Y, Xu Y, Huang Q, Lai L, Chen S, Zhang Z, Cai Y, Zheng Y. Circulating miR-34a levels correlate with age-related hearing loss in mice and humans. Exp Gerontol 76, 58−67, 2016. http://dx.doi.org/10.1016/j.exger.2016.01.00910.1016/j.exger.2016.01.00926802970Search in Google Scholar

Park NJ, Zhou H, Elashoff D, Henson BS, Kastratovic DA, Abemayor E, Wong DT. Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res 15, 5473-5477, 2009. http://dx.doi.org/10.1158/1078-0432.CCR-09-073610.1158/1078-0432.CCR-09-0736275235519706812Search in Google Scholar

Pedersen I, David M. MicroRNAs in the immune response. Cytokine 43, 391−394, 2008. http://dx.doi.org/10.1016/j.cyto.2008.07.01610.1016/j.cyto.2008.07.016364299418701320Search in Google Scholar

Persengiev S, Kondova I, Otting N, Koeppen AH, Bontrop RE. Genome-wide analysis of miRNA expression reveals a potential role for miR-144 in brain aging and spinocerebell arataxia pathogenesis. Neurobiol Aging 32, 2316. e17−27, 2011. http://dx.doi.org/10.1016/j.neurobiolaging.2010.03.01410.1016/j.neurobiolaging.2010.03.01420451302Search in Google Scholar

Pigati L, Yaddanapudi SC, Iyengar R, Kim DJ, Hearn SA, Danforth D, Hastings ML, Duelli DM. Selective release of microRNA species from normal and malignant mammary epithelial cells. PLoS One 5, e13515, 2010. http://dx.doi.org/10.1371/journal.pone.001351510.1371/journal.pone.0013515295812520976003Search in Google Scholar

Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K, Mercatanti A, Hammond S, Rainaldi G. MicroRNAs modulate the angiogenic properties of HUVECs. Blood 108, 3068-3071, 2006. http://dx.doi.org/10.1182/blood-2006-01-01236910.1182/blood-2006-01-01236916849646Search in Google Scholar

Poy MN, Spranger M, Stoffel M. microRNAs and the regulation of glucose and lipid metabolism. Diabetes Obes Metab 9, 67−73, 2007. http://dx.doi.org/10.1111/j.1463-1326.2007.00775.x 10.1111/j.1463-1326.2007.00775.x17919180Search in Google Scholar

Pritchard CC, Kroh E, Wood B, Arroyo JD, Dougherty KJ, Miyaji MM, Tait JF, Tewari M. Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies. Cancer Prev Res (Phila) 5, 492−497, 2012. http://dx.doi.org/10.1158/1940-6207.CAPR-11-0370 10.1158/1940-6207.CAPR-11-0370418624322158052Search in Google Scholar

Redis RS, Calin S, Yang Y, You MJ, Calin GA. Cell-to-cell miRNA transfer: from body homeostasis to therapy. Pharmacol Th er 136, 169−174, 2012. http://dx.doi.org/10.1016/j.pharmthera.2012.08.00310.1016/j.pharmthera.2012.08.003385533522903157Search in Google Scholar

Reid G, Kirschner MB, van Zandwijk N. Circulating microRNAs: Association with disease and potential use as biomarkers. Crit Rev Oncol Hematol 80, 193−208, 2011. http://dx.doi.org/10.1016/j.critrevonc.2010.11.00410.1016/j.critrevonc.2010.11.00421145252Search in Google Scholar

Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. Th e 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901-906, 2000. http://dx.doi.org/10.1038/3500260710.1038/3500260710706289Search in Google Scholar

Roese-Koerner B, Stappert L, Koch P, Brustle O, Borghese L. Pluripotent stem cell-derived somatic stem cells as tool to study the role of microRNAs in early human neural development. Curr Mol Med 13, 707−722, 2013. http://dx.doi.org/10.2174/156652401131305000310.2174/156652401131305000323642053Search in Google Scholar

Sarkar J, Gou D, Turaka P, Viktorova E, Ramchandran R, Raj JU. MicroRNA-21 plays a role in hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration. Am J Physiol Lung Cell Mol Physiol 299, L861−871, 2010. http://dx.doi.org/10.1152/ajplung.00201.201010.1152/ajplung.00201.2010300627320693317Search in Google Scholar

Sayed D, Hong C, Chen IY, Lypowy J, Abdellatif M. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res 100, 416−424, 2007. http://dx.doi.org/10.1161/01.RES.0000257913.42552.2310.1161/01.RES.0000257913.42552.2317234972Search in Google Scholar

Shende VR, Goldrick MM, Ramani S, Earnest DJ. Expression and Rhythmic Modulation of Circulating MicroRNAs Targeting the Clock Gene Bmal1 in Mice. PLoS One 6, e22586, 2011. http://dx.doi.org/10.1371/journal.pone.002258610.1371/journal.pone.0022586314218721799909Search in Google Scholar

Shi B, Sepp-Lorenzino L, Prisco M, Linsley P, deAngelis T, Baserga R. Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. J Biol Chem 282, 32582−32590, 2007. http://dx.doi.org/10.1074/jbc.M70280620010.1074/jbc.M70280620017827156Search in Google Scholar

Shi XB, Xue L, Ma AH, Tepper CG, Gandour-Edwards R, Kung HJ, deVere White RW. Tumor suppressive miR-124 targets androgen receptor and inhibits proliferation of prostate cancer cells. Oncogene 32, 4130−4138, 2013. http://dx.doi.org/10.1038/onc.2012.42510.1038/onc.2012.425411147923069658Search in Google Scholar

Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME. A brain-specific microRNA regulates dendritic spine development. Nature 439, 283-289, 2006. http://dx.doi.org/10.1038/nature0436710.1038/nature0436716421561Search in Google Scholar

Squadrito ML, Baer C, Burdet F, Maderna C, Gilfillan GD, Lyle R, Ibberson M, De Palma M. Endogenous RNAs modulate microRNA sorting to exosomes and transfer to acceptor cells. Cell Rep 8, 1432−4146, 2014. http://dx.doi.org/10.1016/j.celrep.2014.07.03510.1016/j.celrep.2014.07.03525159140Search in Google Scholar

Su YW, Chen X, Jiang ZZ, Wang T, Wang C, Zhang Y, Wen J, Xue M, Zhu D, Zhang Y, Su YJ, Xing TY, Zhang CY, Zhang LY. A panel of serum microRNAs as specific biomarkers for diagnosis of compound- and herb-induced liver injury in rats. PLoS One 7, e37395, 2012. http://dx.doi.org/10.1371/journal.pone.003739510.1371/journal.pone.0037395335625522624025Search in Google Scholar

Sun D, Yu F, Ma Y, Zhao R, Chen X, Zhu J, Zhang CY, Chen J, Zhang J. MicroRNA-31 activates the RAS pathway and functions as an oncogenic MicroRNA in human colorectal cancer by repressing RAS p21 GTPase activating protein 1 (RASA1). J Biol Chem 288, 9508−9518, 2013. http://dx.doi.org/10.1074/jbc.M112.36776310.1074/jbc.M112.367763361101923322774Search in Google Scholar

Sun X, Yang Z, Zhang Y, He J, Wang F, Su P, Han J, Song Z, Fei Y. Prognostic implications of tissue and serum levels of microRNA-128 in human prostate cancer. Int J Clin Exp Pathol 8, 8394−8401, 2015.Search in Google Scholar

Silvestre JS, Mallat Z, Tedgui A, Levy BI. Post-ischaemic neovascularization and inflammation. Cardiovasc Res 78, 242-249. 2008. http://dx.doi.org/10.1093/cvr/cvn027.10.1093/cvr/cvn02718252762Search in Google Scholar

Szafranski K, Abraham KJ, Mekhail K. Non-coding RNA in neural function, disease, and aging. Front Genet 6, 87, eCollection 2015. http://dx.doi.org/10.3389/fgene.2015.0008710.3389/fgene.2015.00087435337925806046Search in Google Scholar

Tang P, Xiong Q, Ge W, Zhang L. Th e role of microRNAs in osteoclasts and osteoporosis. RNA Biol 11, 1355-1363, 2014. http://dx.doi.org/10.1080/15476286.2014.99646210.1080/15476286.2014.996462461557125692234Search in Google Scholar

Tang R, Yang C, Ma X, Wang Y, Luo D, Huang C, Xu Z, Liu P, Yang L. MiR-let-7a inhibits cell proliferation, migration, and invasion by down-regulating PKM2 in gastric cancer. Oncotarget, 7, 5972-5984. 2016. http://dx.doi.org/10.18632/oncotarget.682110.18632/oncotarget.6821486873426745603Search in Google Scholar

Thomson JM, Newman M, Parker JS, Morin-Kensicki EM, Wright T, Hammond SM. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev 20, 2202-2207, 2006. http://dx.doi.org/10.1101/gad.144440610.1101/gad.1444406155320316882971Search in Google Scholar

Tian Y, Liu Y, Wang T, Zhou N, Kong J, Chen L, Snitow M, Morley M, Li D, Petrenko N, Zhou S, Lu M, Gao E, Koch WJ, Stewart KM, Morrisey EE. A microRNA-hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci Transl Med 7, 279ra38, 2015. http://dx.doi.org/10.1126/scitranslmed.301084110.1126/scitranslmed.3010841629531325787764Search in Google Scholar

Title AC, Denzler R, Stoffel M. Uptake and Function Studies of Maternal Milk-derived MicroRNAs. J Biol Chem 290, 23680−23691, 2015. http://dx.doi.org/10.1074/jbc.M115.676734 10.1074/jbc.M115.676734458303126240150Search in Google Scholar

Toiyama Y, Takahashi M, Hur K, Nagasaka T, Tanaka K, Inoue Y, Kusunoki M, Boland CR, Goel A. Serum miR-21 as a diagnostic and prognostic biomarker in colorectal cancer. J Natl Cancer Inst 105, 849−859, 2013. http://dx.doi.org/10.1093/jnci/djt10110.1093/jnci/djt101368736923704278Search in Google Scholar

Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res 39, 7223−7233, 2011. http://dx.doi.org/10.1093/nar/gkr25410.1093/nar/gkr254316759421609964Search in Google Scholar

Valeri N, Gasparini P, Braconi C, Paone A, Lovat F, Fabbri M, Sumani KM, Alder H, Amadori D, Patel T, Nuovo GJ, Fishel R, Croce CM. MicroRNA-21 induces resistance to 5-fl uorouracil by down-regulating human DNA MutS homolog 2 (hMSH2). Proc Natl Acad Sci U S A 107, 21098−21103, 2010. http://dx.doi.org/10.1073/pnas.1015541107 10.1073/pnas.1015541107300029421078976Search in Google Scholar

van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD, Richardson JA, Olson EN. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A 103, 18255-18260, 2006. http://dx.doi.org/10.1073/pnas.0608791103 10.1073/pnas.0608791103183873917108080Search in Google Scholar

van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316, 575−579, 2007. http://dx.doi.org/10.1126/science.1139089 10.1126/science.113908917379774Search in Google Scholar

van Rooij E, Olson EN. Searching for miR-acles in cardiac fibrosis. Circ Res 104, 138−140, 2009. http://dx.doi.org/10.1161/CIRCRESAHA.108.19249210.1161/CIRCRESAHA.108.192492274725119179664Search in Google Scholar

Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins: Nat Cell Biol 13, 423−433, 2011. http://dx.doi.org/10.1038/ncb221010.1038/ncb2210307461021423178Search in Google Scholar

Wang K, Zhang S, Marzolf B, Troisch P, Brightman A, Hu Z, Hood LE, Galas DJ. Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci U S A 106, 4402-4407, 2009a. http://dx.doi.org/10.1073/pnas.081337110610.1073/pnas.0813371106265742919246379Search in Google Scholar

Wang CJ, Zhou ZG, Wang L, Yang L, Zhou B, Gu J, Chen HY, Sun XF. Clinicopathological signifi cance of microRNA-31, -143 and -145 expression in colorectal cancer. Dis Markers 26, 27-34, 2009b. http://dx.doi.org/10.1155/2009/92190710.1155/2009/921907Search in Google Scholar

Wang K, Zhang S, Weber J, Baxter D, Galas DJ. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res 38, 7248-7259, 2010a. http://dx.doi.org/10.1093/nar/gkq60110.1093/nar/gkq601297837220615901Search in Google Scholar

Wang CJ, Stratmann J, Zhou ZG, Sun XF. Suppression of microRNA-31 increases sensitivity to 5-FU at an early stage, and affects cell migration and invasion in HCT-116 colon cancer cells. BMC Cancer 10, 616, 2010b. http://dx.doi.org/10.1186/1471-2407-10-61610.1186/1471-2407-10-616299482221062447Search in Google Scholar

Wang B, Zhang Q. Th e expression and clinical significance of circulating microRNA-21 in serum of five solid tumors. J Cancer Res Clin Oncol 138, 1659-1666, 2012. http://dx.doi.org/10.1007/s00432-012-1244-910.1007/s00432-012-1244-922638884Search in Google Scholar

Wang Q, Huang Z, Ni S, Xiao X, Xu Q, Wang L, Huang D, Tan C, Scheng W, Du X. Plasma miR-601 and miR-760 Are Novel Biomarkers for the Early Detection of Colorectal Cancer. PLoS One 7, e44398, 2012a. http://dx.doi.org/10.1371/journal.pone.004439810.1371/journal.pone.0044398343531522970209Search in Google Scholar

Wang H, Peng W, Ouyang X, Li W, Dai Y. Circulating microRNAs as candidate biomarkers in patients with systemic lupus erythematosus. Transl Res 160, 198-206, 2012b. http://dx.doi.org/10.1016/j.trsl.2012.04.00210.1016/j.trsl.2012.04.00222683424Search in Google Scholar

Wang YC, Li Y, Wang XY, Zhang D, Zhang H, Wu Q, He YQ, Wang JY, Zhang L, Xia H, Yan J, Li X, Ying H. Circulating miR-130b mediates metabolic crosstalk between fat and muscle in overweight/obesity. Diabetologia 56, 2275-2285, 2013. http://dx.doi.org/10.1007/s00125-013-2996-810.1007/s00125-013-2996-823868745Search in Google Scholar

Wang F, Long G, Zhao C, Li H, Chaugai S, Wang Y, Chen C, Wang DW. Atherosclerosis-Related Circulating miRNAs as Novel and Sensitive Predictors for Acute Myocardial Infarction. PLoS One 9, e105734, 2014. http://dx.doi.org/10.1371/journal.pone.010573410.1371/journal.pone.0105734415358625184815Search in Google Scholar

Welch C, Chen Y, Stallings RL. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26, 5017−5022, 2007. http://dx.doi.org/10.1038/sj.onc.121029310.1038/sj.onc.1210293Search in Google Scholar

Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene Lin-14 by Lin-4 mediates temporal pattern-formation in C.elegans. Cell 75, 855-862, 1993. http://dx.doi.org/10.1016/0092-8674(93)90530-410.1016/0092-8674(93)90530-4Search in Google Scholar

Witwer KW, Hirschi KD. Transfer and functional consequences of dietary microRNAs in vertebrates: concepts in search of corroboration: negative results challenge the hypothesis that dietary xenomiRs cross the gut and regulate genes in ingesting vertebrates, but important questions persist. Bioessays 36, 394−406, 2014. http://dx.doi.org/10.1002/bies.20130015010.1002/bies.201300150410982524436255Search in Google Scholar

Wu CW, Dong YJ, Liang QY, He XQ, Ng SS, Chan FK, Sung JJ, Yu J. MicroRNA-18a attenuates DNA damage repair through suppressing the expression of ataxia telangiectasia mutated in colorectal cancer. PLoS One 8, e57036, 2013. http://dx.doi.org/10.1371/journal.pone.0057036 10.1371/journal.pone.0057036357880223437304Search in Google Scholar

Wulfken LM, Moritz R, Ohlmann C, Holdenrieder S, Jung V, Becker F, Herrmann E, Walgenbach-Brunagel G, von Ruecker A, Muller SC, Ellinger J. MicroRNAs in renal cell carcinoma: diagnostic implications of serum miR-1233 levels. PLoS One 6, e25787, 2011. http://dx.doi.org/10.1371/journal.pone.002578710.1371/journal.pone.0025787318417321984948Search in Google Scholar

Xiong J, Yu D, Wei N, Fu H, Cai T, Huang Y, Wu C, Zheng X, Du Q, Lin D, Liang Z. An estrogen receptor alpha suppressor, microRNA-22, is downregulated in estrogen receptor alpha-positive human breast cancer cell lines and clinical samples. FEBS J 277, 1684−1694, 2010. http://dx.doi.org/10.1111/j.1742-4658.2010.07594.x 10.1111/j.1742-4658.2010.07594.x20180843Search in Google Scholar

Xiong B, Cheng Y, Ma L, Zhang C. MiR-21 regulates biological behavior through the PTEN/PI-3 K/Akt signaling pathway in human colorectal cancer cells. Int J Oncol 42, 219−228, 2013. http://dxdoi/10.3892/ijo.2012.1707.10.3892/ijo.2012.170723174819Search in Google Scholar

Xu RS, Wu XD, Zhang SQ, Li CF, Yang L, Li DD, Zhang BG, Zhang Y, Jin JP, Zhang B. Th e tumor suppressor gene RhoBTB1 is a novel target of miR-31 in human colon cancer. Int J Oncol 42, 676−682, 2013. http://dxdoi/10.3892/ijo.2012.174610.3892/ijo.2012.174623258531Search in Google Scholar

Xu L, Li M, Wang M, Yan D, Feng G, An G. The expression of microRNA-375 in plasma and tissue is matched in human colorectal cancer. BMC Cancer 14, 714, 2014. http://dx.doi.org/10.1186/1471-2407-14-71410.1186/1471-2407-14-714418138825255814Search in Google Scholar

Yamada H, Itoh M, Hiratsuka I, Hashimoto S. Circulating microRNAs in autoimmune thyroid diseases. Clin Endocrinol (Oxf) 81, 276−281, 2014. http://dx.doi.org/10.1111/cen.1243210.1111/cen.1243224533739Search in Google Scholar

Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, Zhang Y, Xu C, Bai Y, Wang H, Chen G, Wang Z. Th e muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 13, 486-491, 2007. http://dx.doi.org/10.1038/nm156910.1038/nm156917401374Search in Google Scholar

Yang Z, Chen H, Si H, Li X, Ding X, Sheng Q, Chen P, Zhang H. Serum miR-23a, a potential biomarker for diagnosis of pre-diabetes and type 2 diabetes. Acta Diabetol 51, 823−831, 2014. http://dx.doi.org/10.1007/s00592-014-017-8Search in Google Scholar

Yang Y, Chang S, Zhao Z, Hou NI, He K, Wang X, Gao L, Wang L, Cai D, Guo BO, Tong D, Song T, Huang C. MicroRNA-214 suppresses the proliferation of human hepatocellular carcinoma cells by targeting E2F3. Oncol Lett 10, 3779-3784, 2015. http://dx.doi.org/10.3892/ol.2015.374510.3892/ol.2015.3745466588326788207Search in Google Scholar

Ye W, Lv Q, Wong C-KA, Hu S, Fu C, Hua Z, Cai G, Li G, Yang BB, Zhang Y. The Effect of Central Loops in miRNA:MRE Duplexes on the Efficiency of miRNA-Mediated Gene Regulation. PLoS One 3, e1719, 2008. http://dx.doi.org/10.1371/journal.pone.000171910.1371/journal.pone.0001719224870818320040Search in Google Scholar

Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M, Mayr A, Weger S, Oberhollenzer F, Bonora E, Shah A, Willeit J, Mayr M. Plasma microRNA profi ling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 107, 810-817, 2010. http://dx.doi.org/10.1161/CIRCRESAHA.110.22635710.1161/CIRCRESAHA.110.22635720651284Search in Google Scholar

Zampetaki A, Willeit P, Drozdov I, Kiechl S, Mayr M. Profiling of circulating microRNAs: from single biomarkers to re-wired networks. Cardiovasc Res 93, 555−562, 2012. http://dx.doi.org/10.1093/cvr/cvr26610.1093/cvr/cvr266329108622028337Search in Google Scholar

Zeng W, Tu Y, Zhu Y, Wang Z, Li C, Lao L, Wu G. Predictive power of circulating miRNAs in detecting colorectal cancer. Tumour Biol 36, 2559−2567, 2015. http://dx.doi.org/10.1007/s13277-014-2872-210.1007/s13277-014-2872-225527153Search in Google Scholar

Zhang B, Wang Q, Pan X. MicroRNA and Th eir Regulatory Roles in Animals and Plants. J Cell Physiol 210, 279-289, 2007a. http://dx.doi.org/10.1002/jcp.2086910.1002/jcp.2086917096367Search in Google Scholar

Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and tumor suppressors. Dev Biol 302, 1-12, 2007b. http://dx.doi.org/10.1016/j.ydbio.2006.08.02810.1016/j.ydbio.2006.08.02816989803Search in Google Scholar

Zhang C. MicroRNAs: role in cardiovascular biology and disease. Clin Sci (Lond) 114, 699-706, 2008. http://dx.doi.org/10.1042/CS2007021110.1042/CS2007021118474027Search in Google Scholar

Zhang Z, Li Z, Gao C, Chen P, Chen J, Liu W, Xiao S, Lu H. miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Invest 88, 1358-1366, 2008. http://dx.doi.org/10.1038/labinvest.2008.9410.1038/labinvest.2008.9418794849Search in Google Scholar

Zhang L, Hou D, Chen X, Li D, Zhu L, Zhang Y, Li J, Bian Z, Liang X, Cai X, Yin Y, Wang C, Zhang T, Zhu D, Zhang D, Xu J, Chen Q, Ba Y, Liu J, Wang Q, Chen J, Wang J, Wang M, Zhang Q, Zhang J, Zen K, Zhang CY. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res 22, 107-126, 2012. http://dx.doi.org/10.1038/cr.2011.17410.1038/cr.2011.174Search in Google Scholar

Zheng L, Xu CC, Chen WD, Shen WL, Ruan CC, Zhu LM, Zhu DL, Gao PJ. MicroRNA-155 regulates angiotensin II type 1 receptor expression and phenotypic differentiation in vascular adventitial fibroblasts. Biochem Biophys Res Commun 400, 483−488, 2010. http://dx.doi.org/10.1016/j.bbrc.2010.08.06710.1016/j.bbrc.2010.08.06720735984Search in Google Scholar

Zong L, Zhu Y, Liang R, Zhao HB. Gap junction mediated miRNA intercellular transfer and gene regulation: A novel mechanism for intercellulargenetic communication. Sci Rep 6, 19884, 2016. http://dx.doi.org/10.1038/srep1988410.1038/srep19884472848726814383Search in Google Scholar

Zuckerman JE, Davis ME. Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat Rev Drug Discov 14, 843−856, 2015. http://dx.doi.org/10.1038/nrd468510.1038/nrd468526567702Search in Google Scholar

eISSN:
1336-0329
Język:
Angielski