Otwarty dostęp

Optimization of nitrogen source for Bifidobacterium bifidum using response surface methodology


Zacytuj

1. Annan, N., Borza, A., Moreau, D., et al. (2007). Effect of process variables on particle size and viability of Bifidobacterium lactis Bb-12 in genipin-gelatin microspheres. Journal of microencapsulation, 24 (2), 152-162.10.1080/0265204060116247517454426Search in Google Scholar

2. Rada, V., Vlková, E., Nevoral, J., et al. (2006). Comparison of bacterial flora and enzymatic activity in faeces of infants and calves. FEMS Microbiol Lett, 258(1), 25-28.10.1111/j.1574-6968.2006.00207.x16630250Search in Google Scholar

3. Homayouni, A., Azizi, A., Ehsani, M. R., et al. (2008). Effect of microencapsulation and resistant starch on the probiotic survival and sensory properties of synbiotic ice cream. Food Chemistry, 111 (1), 50-55.10.1016/j.foodchem.2008.03.036Search in Google Scholar

4. Mokarram, R., Mortazavi, S., Najafi, M., et al. (2009). The influence of multi stage alginate coating on survivability of potential probiotic bacteria in simulated gastric and intestinal juice. Food Research International, 42 (8), 1040-1045.10.1016/j.foodres.2009.04.023Search in Google Scholar

5. Guerin, D., Vuillemard, J.C., Subirade, M. (2003). Protection of bifidobacteria encapsulated in polysaccharide-protein gel beads against gastric juice and bile. Journal of Food Protection, 66 (11), 2076-2084.10.4315/0362-028X-66.11.207614627286Search in Google Scholar

6. Weinbreck, F., Bodnár, I., Marco, M. (2010). Can encapsulation lengthen the shelf-life of probiotic bacteria in dry products. International journal of food microbiology, 136 (3), 364-367.10.1016/j.ijfoodmicro.2009.11.00419948367Search in Google Scholar

7. Altieri, C., Bevilacqua, A., D’Amato, D. (2008). Modelling the survival of starter lactic acid bacteria and Bifidobacterium bifidum in single and simultaneous cultures. Food Microbiology, 25 (5), 729-734.10.1016/j.fm.2008.03.00518541173Search in Google Scholar

8. Almeida, B.M., Erthal S.R., Padaa O.E. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76 (2), 965-977.Search in Google Scholar

9. Ye Chunlin, Jiang Chengjun. (2011). Optimization of extraction process of crude polysaccharides from Plantago asiatica L. by response surface methodology. Carbohydrate Polymers, 84 (1), 495-502.Search in Google Scholar

10. Sun Yongxu, Liu Jicheng, Kennedy, J. F. (2010). Application of response surface methodology for optimization of polysaccharides production parameters from the roots of Codonopsis pilosula by a central composite design. Carbohydrate Polymers, 80 (3), 949-953.Search in Google Scholar

11. Gao Yulong, Jiang Hanhu. (2005). Optimization of process conditions to inactivate Bacillus subtilis by high hydrostatic pressure and mild heat using response surface methodology. Biochemical Engineering Journal, 24 (1), 43-48.Search in Google Scholar

12. Nikerel, E., Kirdar, B., Yildirim, R., et al. (2006). Optimization of medium composition for biomass production of recombinant Escherichia coli cells using response surface methodology. Biochemical Engineering Journal, 32 (8), 1-6.10.1016/j.bej.2006.08.009Search in Google Scholar

13. Zhang Jun, Dong Yachen, Fan Linlin, Jiao Zhihua, Chen Qihe. 2015. Optimization of culture medium compositions for gellan gum production by a halobacterium Sphingomonas paucimobilis. Carbohydrate Polymers, 115 (22), 694-700.Search in Google Scholar

14. Manikandan, M., Pašic L., Kannan, V. (2009). Optimization of growth media for obtaining high-cell density cultures of halophilic archaea (family Halobacteriaceae) by response surface methodology. Bioresource Technology, 100 (12), 3017-3012.10.1016/j.biortech.2009.01.03319243935Search in Google Scholar

15. Janer, C., Peláez, C., Requena, T. (2004). Caseinomacropeptide and whey protein concentrate enhance Bifidobacterium lactis growth in milk. Food Chemistry, 86 (2), 263-267.10.1016/j.foodchem.2003.09.034Search in Google Scholar

16. Espinosa, M., Irene, Rupérez, et al. (2009). Indigestible fraction of okara from soybean: Composition, physicochemical properties and in vitro fermentability by pure cultures of Lactobacillus acidophilus and Bifidobacterium bifidum. European Food Research and Technology, 228 (5), 685-693.10.1007/s00217-008-0979-7Search in Google Scholar

17. Zeng Xiaobo, Wang Haiying, He Linyu, Lin Yongcheng, Li Zhongtao. (2006). Medium optimization of carbon and nitrogen sources for the production of eucalyptene A and xyloketal A from Xylaria sp. 2508 using response surface methodology. Process Biochemistry, 41 (2), 293-298.Search in Google Scholar

18. Siti Aminah, S., Aidil, A.H.; Wan, W.Y. (2006). Medium Optimization for the Production of Lipidless Biomass By Cunninghamella sp. 2A1 Using Response Surface Methodology. Malaysian J. Microbiol, 2 (1), 40-45.Search in Google Scholar

19. Patil S. A., Surwase, S. N., Jadhav, S. B. (2013). Optimization of medium using response surface methodology for L-DOPA production by Pseudomonas sp. SSA. Biochemical Engineering Journal, 74 (15), 36-45.10.1016/j.bej.2013.02.021Search in Google Scholar

eISSN:
2344-150X
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, other, Food Science and Technology