Otwarty dostęp

Approximations to the Non-Isothermal Distributed Activation Energy Model for Biomass Pyrolysis Using the Rayleigh Distribution


Zacytuj

BENDER, C. M. – ORSZAG, S. A. 1978. Advanced Mathematical Methods for Scientists and Engineers. New York : Mc Graw Hill.Search in Google Scholar

CAI, J. M. – FANG, H. – FUSHENG, Y. 2006. Nonisothermal nth-order DAEM equation and its parametric study – Use in the kinetic analysis of biomass pyrolysis. In Journal of Mathematical Chemistry, vol. 42, no. 4, pp. 949–956.Search in Google Scholar

CAI, J. M. – LIU, R. H. 2007. Parametric study of the nonisothermal nth order distributed activation energy model involved the Weibull distribution for biomass pyrolysis. In Journal of Thermal Analysis and Calorimetry, vol. 89, no. 3, pp. 971–975.Search in Google Scholar

DHAUNDIYAL, A. – SINGH, S. B. 2016a. Distributed activation energy modelling for pyrolysis of forest waste using Gaussian distribution. In Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, Applied Sciences, vol. 70, no. 1, pp. 64–70.Search in Google Scholar

DHAUNDIYAL, A. – SINGH, S. B. 2016b. Asymptotic approximations to the distributed activation energy model for non isothermal pyrolysis of loose biomass using the Weibull distribution. In Archivum Combustionis, vol. 36, no. 2, pp. 131–146.Search in Google Scholar

DHAUNDIYAL, A – SINGH, S. B. 2017. Parametric study of nth order distributed activation energy model for isothermal pyrolysis of forest waste using Gaussian distribution. In Acta Technologica Agriculturae, vol. 20, no. 1, pp. 23–28.Search in Google Scholar

DHAUNDIYAL, A. – TEWARI, P. C. 2017. Kinetic parameters for the thermal decomposition of forest waste using distributed activation energy model (DAEM). In Environmental and Climate Technologies, vol. 19, pp. 15–32.Search in Google Scholar

DONSKOI, E. – MCELWAIN, D. L. S. 1999. Approximate modelling of coal pyrolysis. In Fuel, vol. 78, no. 7, pp. 825–835.10.1016/S0016-2361(98)00204-XOpen DOISearch in Google Scholar

HOWARD, J. B. 1981. Chapter 12. Fundamentals of coal pyrolysis and hydropyrolysis. In Chemistry of Coal Utilization. New York : John Wiley and Sons, pp. 665–784. ISBN 0471077267.Search in Google Scholar

LAKSHMANAN, C. C. – WHITE, N. 1994. A new distributed activation energy model using Weibull distribution for the representation of complex kinetics. In Energy & Fuels, vol. 8, no. 6, pp. 1158–1167.10.1021/ef00048a001Open DOISearch in Google Scholar

NIKSA, S. – LAU, C. W. 1993. Global rates of devolatilization for various coal types. In Combustion abd Flame, vol. 94, no. 3, pp. 293–307.Search in Google Scholar

PITT, G. J. 1962. The kinetics of the evolution of volatile products from coal. In Fuel, vol. 41, no. 1, pp. 267–274.Search in Google Scholar

SUUBERG, E. M. 1983. Approximate solution technique for nonisothermal, Gaussian distributed activation energy models. In Combustion and Flame, vol. 50, pp. 243–245.10.1016/0010-2180(83)90066-4Open DOISearch in Google Scholar

TENG, H. – HSIEH, C. T. 1999. Influence of surface characteristics on liquid-phase adsorption of phenol by activated carbons prepared from bituminous coal. In Industrial and Engineering Chemistry Research, vol. 37, no. 9, pp. 3618–3624.Search in Google Scholar

VAND, A. 1943. Theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum. In Proceedings of Physics Society of London A, vol. 55, pp. 222–246.Search in Google Scholar

eISSN:
1338-5267
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other