Zacytuj

1. Testa B, Mayer JB. Hydrolysis in Drug and Prodrug Metabolism: Chemistry, Biochemistry and Enzymology, Wiley-VCH, 2003.10.1002/9783906390444Search in Google Scholar

2. Ettmayer P, Amidon GL, Clement B et al. Lessons learned from marketed and investigational prodrugs. J Med Chem. 2004;47(10):2393-2240.10.1021/jm030381215115379Search in Google Scholar

3. Testa B. Prodrug research: futile or fertile. Biochem Pharmacol. 2004;68(11):2097-2106.10.1016/j.bcp.2004.07.00515498500Search in Google Scholar

4. Rautio J, Kumpulainen H, Heimbach T, et al. Prodrugs: design and clinical applications. Nat Rev Drug Discov. 2008;7:255-270.10.1038/nrd246818219308Search in Google Scholar

5. Rautio J, Laine K, Gynther M, et al. Prodrug approaches for CNS delivery. AAPS J. 2008;10:92-102.10.1208/s12248-008-9009-8275145418446509Search in Google Scholar

6. Jilani JA, Idkaidek NM, Alzoubi KH. Synthesis, In Vitro and In Vivo Evaluation of the N-ethoxycarbonylmorpholine Ester of Diclofenac as a Prodrug. Pharmaceuticals (Basel). 2014;7(4):453-63.10.3390/ph7040453401470224736104Search in Google Scholar

7. Wohl AR, Michel AR, Kalscheuer S, et al. Silicat esters of paclitaxel and docetaxel: synthesis, hydrophobicity, hydrolytic stability, cytotoxicity, andprodrug potential. J Med Chem. 2014;57(6):2368-2379.10.1021/jm401708f398335124564494Search in Google Scholar

8. Liu KS, Hsieh PW, Aljuffali IA, et al. Impact of ester promoieties on transdermal delivery of ketorolac. J Pharm Sci. 2014;103(3):974-986.10.1002/jps.2388824481782Search in Google Scholar

9. Diez-Torrubia A, Cabrera S, de Castro S, et al. Novel water-soluble prodrugs of acyclovir cleavable by the dipeptidyl-peptidase IV (DPP IV/CD26) enzyme. Eur J Med Chem. 2013;70:456-468.10.1016/j.ejmech.2013.10.00124185376Search in Google Scholar

10. Lai L, Xu Z, Zhou J, et al. Molecular basis of prodrug activation by human valacyclovirase, an alpha-amino acid ester hydrolase. J Biol Chem. 2008;283(14):9318-9327.10.1074/jbc.M709530200243103218256025Search in Google Scholar

11. Rautio J, Mannhold R, Kubinyi H, Folkers G. Prodrugs and Targeted Delivery: Towards Better ADME Properties, Volume 47, Wiley-VCH Verlag Gmbh & Co KGA, Weinheim, 2011.10.1002/9783527633166Search in Google Scholar

12. Chiodo F, Marradi M, Calvo J, et al. Glycosystems in nanotechnology: Gold glyconanoparticles as carrier for anti-HIV prodrugs. Beilstein J Org Chem. 2014;10:1339-1346.10.3762/bjoc.10.136407745524991287Search in Google Scholar

13. Vivekkumar K Redasani, Sanjay B. Bari. Prodrug Design: Perspectives, Approaches and Applications. Elsevier London, 2015.10.1016/B978-0-12-803519-1.00011-8Search in Google Scholar

14. Albert A. Chemical aspects of selective toxicity. Nature. 1958;182:421-422.10.1038/182421a013577867Search in Google Scholar

15. Wermuth CG, Ganellin CR, Lindberg P, et al. “Glossaryis of terms used in medicinal chemistry (IUPAC Recommendations 1998)”. Pure and Applied Chemistry. 1998;70(5):1129.10.1351/pac199870051129Search in Google Scholar

16. N’Da DD. Prodrug strategies for enhancing the percutaneous absorption of drugs. Molecules. 2014;19(12):20780-20807.10.3390/molecules191220780627186725514222Search in Google Scholar

17. Forde E, Devocelle M. Pro-moieties of antimicrobial peptide prodrugs. Molecules. 2015;20(1):1210-1227.10.3390/molecules20011210627266825591121Search in Google Scholar

18. Wermuth CG, Aldous D, Raboisson P, et al. The practice of Medicinal Chemistry, fourth edition, Academic Press, London, 2015;657-692.Search in Google Scholar

19. Vert M, Doi Y, Hellwich K, et al. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012)”. Pure and Applied Chemistry 2012;84(2):377-410.10.1351/PAC-REC-10-12-04Search in Google Scholar

20. Das N, Dhanawat M, Dash M. Codrug: An efficient approach for drug optimization. Eur J of Pharm Sci. 2010;41:571-588.10.1016/j.ejps.2010.09.01420888411Search in Google Scholar

21. Leppänen J, Huuskonen J, Nevalainen T, et al. Design and synthesis of a novel L-dopa-entacapone codrug. Med Chem. 2002;45(6):1379-1382.10.1021/jm010980d11882007Search in Google Scholar

22. Bodor N, Buchwald P. Soft drug design: General principles and recent applications. Medicinal Research Reviews. 2000;20(1):58-101.10.1002/(SICI)1098-1128(200001)20:1<58::AID-MED3>3.0.CO;2-XSearch in Google Scholar

23. Takácsné Novák K. A prodrug stratégia a gyógyszerkutatásban: bevált módszerek és új irányok. Gyógyszerészet. 2013;57:451-459.Search in Google Scholar

24. Keserű GyM. A gyógyszerkutatás kémiája. Akadémiai Kiadó, Budapest, 2011;539-564.Search in Google Scholar

25. Zawilska JB, Wojcieszak J, Olejniczak AB. Prodrugs: a challenge for the drug development. Pharmacol Rep. 2013;65(1):1-14.10.1016/S1734-1140(13)70959-9Search in Google Scholar

26. Stella VJ. Prodrugs: some thoughts and current issues. J Pharm Sci. 2010;99:4755-4765.10.1002/jps.22205Search in Google Scholar

27. Stella VJ, Burchardt RT, Hageman MJ, et al. Prodrugs: Challenges and Rewards. Part 1. Springer, New York, 2007.10.1007/978-0-387-49785-3Search in Google Scholar

28. Stella VJ, Nti-Addae KW. Prodrug strategies to overcome poor water solubility. Adv Drug Deliv Rev. 2007;59(7):677-694.10.1016/j.addr.2007.05.013Search in Google Scholar

29. Kokil GR, Rewatkar PV. Bioprecursor prodrugs: molecular modification of the active principle. Mini Rev Med Chem. 2010;10:1316-1330.10.2174/138955710793564179Search in Google Scholar

30. Wu KM. A new classification of prodrugs: regulatory perspective. Pharmaceuticals. 2009;2:77-81.10.3390/ph2030077Search in Google Scholar

31. Wu KM, Farrelly J. Regulatory perspectives of type II prodrug development and time-dependent toxicity management: Nonclinical pharm/tox analysis and the role of comparative toxicology. Toxicology. 2007;236:1-6.10.1016/j.tox.2007.04.005Search in Google Scholar

32. Balendiran GK, Rath N, Kotheimer A. Biomolecular chemistry of isopropyl fibrates. J Pharm Sci. 2012;101(4):1555-1569.10.1002/jps.23040Search in Google Scholar

33. Lesniewska MA, Ostrowski T, Zeidler J, et al. Ester groups as carriers of antivirally active tricyclic analogue of acyclovir in prodrugs designing: synthesis, lipophilicity-comparative statistical study of the chromatographic and theoretical methods, validation of the HPLC method. Comb Chem High Throughput Screen. 2014;17(7):639-650.10.2174/1386207317666140526100532Search in Google Scholar

34. Chanteux H, Rosa M, Delatour C, et al. In vitro hydrolysis and transesterification of CDP323, an α4β1/α4β7 integrin antagonist ester prodrug. Drug Metab Dispos. 2014;42(1):153-161.10.1124/dmd.113.054049Search in Google Scholar

35. Swaan PW, Stehouwer MC, Tukker JJ. Molecular mechanism for the relative binding affinity to the intestinal peptide carrier. Comparison of three ACE-inhibitors: enalapril, enalaprilat and lisinopril. Biochim Biophys Acta. 1995;1236(1):31-38.10.1016/0005-2736(95)00030-7Search in Google Scholar

36. Liu KS, Hsieh PW, Aljuffali IA, et al. Impact of ester promoieties on transdermal delivery of ketorolac. J Pharm Sci. 2014;103(3):974-986.10.1002/jps.2388824481782Search in Google Scholar

37. Karaman R. Computer-assisted design for atenolol prodrugs for the use in aqueous formulations. J Mol Model. 2012;18(4):1523-1540.10.1007/s00894-011-1180-721785934Search in Google Scholar

38. Wang H, Xie H, Wu J, et al. Structure-based rational design of prodrugs to enable their combination with polymeric nanoparticle delivery platforms for enhanced antitumor efficacy. Angew Chem Int Ed. 2014;53(43):11532-11537.10.1002/anie.201406685422546825196427Search in Google Scholar

39. Lang BC, Yang J, Wang Y, et al. An improved design of water-soluble propofol prodrugs characterized by rapid onset of action. Anesth Analg. 2014;118(4):745-754.10.1213/ANE.000000000000012424651228Search in Google Scholar

40. Wozniak KM, Vornov JJ, Mistry BM. Gastrointestinal delivery of propofol from fospropofol: its bioavailability and activity in rodents and human volunteers. J Transl Med. 2015;13:170.10.1186/s12967-015-0526-9444831326021605Search in Google Scholar

41. Sharma SK, Bagshawe KD. Antibody-directed enzyme prodrug therapy (ADEPT) for cancer. Springer 2010;393-405.10.1007/978-1-4419-0507-9_11Search in Google Scholar

42. Tietze L, Krewer B. Antibody-directed enzyme prodrug therapy: a promising approach for a selective treatment of cancer based on prodrugs and monoclonal antibodies. Chem Biol Drug Des. 2009;74:205-211.10.1111/j.1747-0285.2009.00856.x19660031Search in Google Scholar

43. Mazzaferro S, Bouchemal K, Ponchel G. Oral delivery of anticancer drugs II: the prodrug strategy. Drug Discovery Today. 2013;18(1-2):93-98.10.1016/j.drudis.2012.08.00622960308Search in Google Scholar

44. Tietze LF, Krewer B. Antibody-directed enzyme prodrug therapy: a promising approach for a selective treatment of cancer based on prodrugs and monoclonal antibodies. Chem Biol Drug Des. 2009;74:205-211.10.1111/j.1747-0285.2009.00856.xSearch in Google Scholar

45. Schmoll HJ, Twelves C, Sun W, et al. Effect of adjuvant capecitabine or fluorouracil, with or without oxaliplatin, on survival outcomes in stage III coloncancer and the effect of oxaliplatin on post-relapse survival: a pooled analysis of individual patient data from four randomised controlled trials. Lancet Oncol. 2014;15(13):1481-1492.10.1016/S1470-2045(14)70486-3Search in Google Scholar

46. Loke J, Khan JN, Wilson JS, et al. Mylotarg has potent anti-leukaemic effect: a systematic review and meta-analysis of anti-CD33 antibody treatment in acute myeloid leukaemia. Ann Hematol. 2015;94(3):361-373.10.1007/s00277-014-2218-6431751925284166Search in Google Scholar

47. Gamis AS, Alonzo TA, Meshinchi S, et al. Gemtuzumab ozogamicin in children and adolescents with de novo acute myeloid leukemia improves event-free survival by reducing relapse risk: results from the randomized phase III Children’s Oncology Group trial AAML0531. J Clin Oncol. 2014;32(27):3021-3032.10.1200/JCO.2014.55.3628416249825092781Search in Google Scholar

48. Rowe JM, Löwenberg B. Gemtuzumab ozogamicin in acute myeloid leukemia: a remarkable saga about an active drug. Blood. 2013;121(24):4838-4841.10.1182/blood-2013-03-49048223591788Search in Google Scholar

49. Singh Y, Palombo M, Sinko PJ. Recent Trends in Targeted Anticancer Prodrug and Conjugate Design. Curr Med Chem. 2008;15(18):1802-1826.10.2174/092986708785132997280222618691040Search in Google Scholar

50. Aloysius H, Hu L. Targeted prodrug approaches for hormone refractory prostate cancer. Med Res Rev. 2015;35(3):554-585.10.1002/med.2133325529338Search in Google Scholar

51. Schellmann N, Deckert PM, Bachran D, et al. Targeted enzyme prodrug therapies. Mini Rev Med Chem. 2010;10:887-904.10.2174/13895571079200719620560876Search in Google Scholar

52. Osipovitch DC, Parker AS, Makokha CD, et al. Design and analysis of immune-evading enzymes for ADEPT therapy. Protein Eng Des Sel. 2012;25(10):613-623.10.1093/protein/gzs044344940122898588Search in Google Scholar

53. Zhou X, Wang H, Shi P, et al. Characterization of a fusion protein of RGD4C and the β-lactamase variant for antibody-directed enzyme prodrug therapy. Onco Targets Ther. 2014;7:535-541.10.2147/OTT.S59346398627424748803Search in Google Scholar

54. Zhang J, Kale V, Chen M. Gene-directed enzyme prodrug therapy. AAPS J. 2015;17(1):102-110.10.1208/s12248-014-9675-7428728625338741Search in Google Scholar

eISSN:
2247-6113
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
Medicine, Clinical Medicine, other