Otwarty dostęp

Osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells encapsulated in Thai silk fibroin/collagen hydrogel: a pilot study in vitro


Zacytuj

Nicodemus GD, Bryant SJ. Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B Rev. 2008; 14:149–65.NicodemusGDBryantSJCell encapsulation in biodegradable hydrogels for tissue engineering applicationsTissue Eng Part B Rev2008141496510.1089/ten.teb.2007.0332Search in Google Scholar

Thitiwuthikiat P, Ii M, Saito T, Asahi M, Kanokpanont S, Tabata Y. A vascular patch prepared from Thai silk fibroin and gelatin hydrogel incorporating simvastatin-micelles to recruit endothelial progenitor cells. Tissue Eng Part A. 2015; 21:1309–19.ThitiwuthikiatPIiMSaitoTAsahiMKanokpanontSTabataYA vascular patch prepared from Thai silk fibroin and gelatin hydrogel incorporating simvastatin-micelles to recruit endothelial progenitor cellsTissue Eng Part A20152113091910.1089/ten.tea.2014.0237Search in Google Scholar

Vorrapakdee R, Kanokpanont S, Ratanavaraporn J, Waikakul S, Charoenlap C, Damrongsakkul S. Modification of human cancellous bone using Thai silk fibroin and gelatin for enhanced osteoconductive potential. J Mater Sci Mater Med. 2013; 24:735–44.VorrapakdeeRKanokpanontSRatanavarapornJWaikakulSCharoenlapCDamrongsakkulSModification of human cancellous bone using Thai silk fibroin and gelatin for enhanced osteoconductive potentialJ Mater Sci Mater Med2013247354410.1007/s10856-012-4830-0Search in Google Scholar

Floren M, Migliaresi C, Motta A. Processing techniques and applications of silk hydrogels in bioengineering. J Funct Biomater. 2016; 7:pii:E26. doi: 10.3390/jfb7030026FlorenMMigliaresiCMottaAProcessing techniques and applications of silk hydrogels in bioengineeringJ Funct Biomater20167piiE26doi10.3390/jfb7030026Open DOISearch in Google Scholar

Wang HY, Zhang YQ. Processing silk hydrogel and its applications in biomedical materials. Biotechnol Prog. 2015; 31:630–40.WangHYZhangYQProcessing silk hydrogel and its applications in biomedical materialsBiotechnol Prog2015316304010.1002/btpr.2058Search in Google Scholar

Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL. Materials fabrication from Bombyx mori silk fibroin. Nat Protoc. 2011; 6:1612–31.RockwoodDNPredaRCYücelTWangXLovettMLKaplanDLMaterials fabrication from Bombyx mori silk fibroinNat Protoc2011616123110.1038/nprot.2011.379Search in Google Scholar

Kang GD, Nahm JH, Park JS, Moon JY, Cho CS, Yeo JH. Effects of poloxamer on the gelation of silk fibroin. Macromol Rapid Commun. 2000; 21:788–91.KangGDNahmJHParkJSMoonJYChoCSYeoJHEffects of poloxamer on the gelation of silk fibroinMacromol Rapid Commun2000217889110.1002/1521-3927(20000701)21:11<788::AID-MARC788>3.0.CO;2-XSearch in Google Scholar

Wu X, Hou J, Li M, Wang J, Kaplan DL, Lu S. Sodium dodecyl sulfate-induced rapid gelation of silk fibroin. Acta Biomater. 2012; 8:2185–92.WuXHouJLiMWangJKaplanDLLuSSodium dodecyl sulfate-induced rapid gelation of silk fibroinActa Biomater2012821859210.1016/j.actbio.2012.03.007Search in Google Scholar

Yücel T, Cebe P, Kaplan DL. Vortex-induced injectable silk fibroin hydrogels. Biophys J. 2009; 97:2044–50.YücelTCebePKaplanDLVortex-induced injectable silk fibroin hydrogelsBiophys J20099720445010.1016/j.bpj.2009.07.028Search in Google Scholar

Apinun J, Yamdech R, Damrongsakkul S, Jamkratoke J, Kanokpanont S. Viability of rat’s bone marrow-derived mesenchymal stem cells in a surfactant-induced Thai silk fibroin hydrogel. In: Biomedical Engineering International Conference: BMEiCON 2017: Proceedings of the 10th Biomedical Engineering International Conference; 2017 31 Aug – 2 Sept; Hokkaido, Japan.ApinunJYamdechRDamrongsakkulSJamkratokeJKanokpanontSViability of rat’s bone marrow-derived mesenchymal stem cells in a surfactant-induced Thai silk fibroin hydrogelInBiomedical Engineering International Conference: BMEiCON 2017: Proceedings of the 10th Biomedical Engineering International Conference201731 Aug – 2 SeptHokkaido, Japan10.1109/BMEiCON.2017.8229144Search in Google Scholar

Ghezzi CE, Marelli B, Donelli I, Alessandrino A, Freddi G, Nazhat SN. The role of physiological mechanical cues on mesenchymal stem cell differentiation in an airway tract-like dense collagen-silk fibroin construct. Biomaterials. 2014; 35:6236–47.GhezziCEMarelliBDonelliIAlessandrinoAFreddiGNazhatSNThe role of physiological mechanical cues on mesenchymal stem cell differentiation in an airway tract-like dense collagen-silk fibroin constructBiomaterials20143562364710.1016/j.biomaterials.2014.04.040Search in Google Scholar

Ghezzi CE, Marelli B, Donelli I, Alessandrino A, Freddi G, Nazhat SN. Multilayered dense collagen-silk fibroin hybrid: a platform for mesenchymal stem cell differentiation towards chondrogenic and osteogenic lineages. J Tissue Eng Regen Med. 2015; 11:2046–59.GhezziCEMarelliBDonelliIAlessandrinoAFreddiGNazhatSNMultilayered dense collagen-silk fibroin hybrid: a platform for mesenchymal stem cell differentiation towards chondrogenic and osteogenic lineagesJ Tissue Eng Regen Med20151120465910.1002/term.2100Search in Google Scholar

Long K, Liu Y, Li W, Wang L, Liu S, Wang Y, Ren L. Improving the mechanical properties of collagen-based membranes using silk fibroin for corneal tissue engineering. J Biomed Mater Res A. 2015; 103:1159–68.LongKLiuYLiWWangLLiuSWangYRenLImproving the mechanical properties of collagen-based membranes using silk fibroin for corneal tissue engineeringJ Biomed Mater Res A201510311596810.1002/jbm.a.35268Search in Google Scholar

Shen Y, Redmond SL, Papadimitriou JM, Teh BM, Yan S, Wang Y, et al. The biocompatibility of silk fibroin and acellular collagen scaffolds for tissue engineering in the ear. Biomed Mater. 2014; 9:015015. doi: 10.1088/1748-6041/9/1/015015ShenYRedmondSLPapadimitriouJMTehBMYanSWangYet alThe biocompatibility of silk fibroin and acellular collagen scaffolds for tissue engineering in the earBiomed Mater20149015015doi10.1088/1748-6041/9/1/015015Open DOISearch in Google Scholar

Wang G, Hu X, Lin W, Dong C, Wu H. Electrospun PLGA-silk fibroin-collagen nanofibrous scaffolds for nerve tissue engineering. In Vitro Cell Dev Biol Anim. 2011; 47:234–40.WangGHuXLinWDongCWuHElectrospun PLGA-silk fibroin-collagen nanofibrous scaffolds for nerve tissue engineeringIn Vitro Cell Dev Biol Anim2011472344010.1007/s11626-010-9381-4Search in Google Scholar

Wei G, Li C, Fu Q, Xu Y, Li H. Preparation of PCL/silk fibroin/collagen electrospun fiber for urethral reconstruction. Int Urol Nephrol. 2015; 47:95–9.WeiGLiCFuQXuYLiHPreparation of PCL/silk fibroin/collagen electrospun fiber for urethral reconstructionInt Urol Nephrol20154795910.1007/s11255-014-0854-3Search in Google Scholar

Marelli B, Ghezzi CE, Alessandrino A, Barralet JE, Freddi G, Nazhat SN. Silk fibroin derived polypeptide-induced biomineralization of collagen. Biomaterials. 2012; 33:102–8.MarelliBGhezziCEAlessandrinoABarraletJEFreddiGNazhatSNSilk fibroin derived polypeptide-induced biomineralization of collagenBiomaterials201233102810.1016/j.biomaterials.2011.09.039Search in Google Scholar

Vachiraroj N, Ratanavaraporn J, Damrongsakkul S, Pichyangkura R, Banaprasert T, Kanokpanont S. A comparison of Thai silk fibroin-based and chitosan-based materials on in vitro biocompatibility for bone substitutes. Int J Biol Macromol. 2009; 45:470–7.VachirarojNRatanavarapornJDamrongsakkulSPichyangkuraRBanaprasertTKanokpanontSA comparison of Thai silk fibroin-based and chitosan-based materials on in vitro biocompatibility for bone substitutesInt J Biol Macromol200945470710.1016/j.ijbiomac.2009.07.010Search in Google Scholar

Ratanavaraporn J, Kanokpanont S, Damrongsakkul S. The development of injectable gelatin/silk fibroin microspheres for the dual delivery of curcumin and piperine. J Mater Sci Mater Med. 2014; 25:401–10.RatanavarapornJKanokpanontSDamrongsakkulSThe development of injectable gelatin/silk fibroin microspheres for the dual delivery of curcumin and piperineJ Mater Sci Mater Med2014254011010.1007/s10856-013-5082-3Search in Google Scholar

Ginis I, Weinreb M, Abramov N, Shinar D, Merchav S, Schwartz A, et al. Bone progenitors produced by direct osteogenic differentiation of the unprocessed bone marrow demonstrate high osteogenic potential in vitro and in vivo. Biores Open Access. 2012; 1:69–78.GinisIWeinrebMAbramovNShinarDMerchavSSchwartzAet alBone progenitors produced by direct osteogenic differentiation of the unprocessed bone marrow demonstrate high osteogenic potential in vitro and in vivoBiores Open Access20121697810.1089/biores.2012.9904Search in Google Scholar

Takahashi Y, Yamamoto M, Tabata Y. Osteogenic differentiation of mesenchymal stem cells in biodegradable sponges composed of gelatin and β-tricalcium phosphate. Biomaterials. 2005; 26:3587–96.TakahashiYYamamotoMTabataYOsteogenic differentiation of mesenchymal stem cells in biodegradable sponges composed of gelatin and β-tricalcium phosphateBiomaterials20052635879610.1016/j.biomaterials.2004.09.046Search in Google Scholar

Lindborg BA, Brekke JH, Scott CM, Chai YW, Ulrich C, Sandquist L, et al. A chitosan-hyaluronan-based hydrogel-hydrocolloid supports in vitro culture and differentiation of human mesenchymal stem/stromal cells. Tissue Eng Part A. 2015; 21:1952–62.LindborgBABrekkeJHScottCMChaiYWUlrichCSandquistLet alA chitosan-hyaluronan-based hydrogel-hydrocolloid supports in vitro culture and differentiation of human mesenchymal stem/stromal cellsTissue Eng Part A20152119526210.1089/ten.tea.2014.0335Search in Google Scholar

Moshaverinia A, Chen C, Akiyama K, Xu X, Chee WW, Schricker SR, Shi S. Encapsulated dental-derived mesenchymal stem cells in an injectable and biodegradable scaffold for applications in bone tissue engineering. J Biomed Mater Res A. 2013; 101:3285–94.MoshaveriniaAChenCAkiyamaKXuXCheeWWSchrickerSRShiSEncapsulated dental-derived mesenchymal stem cells in an injectable and biodegradable scaffold for applications in bone tissue engineeringJ Biomed Mater Res A201310132859410.1002/jbm.a.34546Search in Google Scholar

Raucci MG, Alvarez-Perez MA, Demitri C, Sannino A, Ambrosio L. Proliferation and osteoblastic differentiation of hMSCs on cellulose-based hydrogels. J Appl Biomater Funct Mater. 2012; 10:302–7.RaucciMGAlvarez-PerezMADemitriCSanninoAAmbrosioLProliferation and osteoblastic differentiation of hMSCs on cellulose-based hydrogelsJ Appl Biomater Funct Mater201210302710.5301/JABFM.2012.10366Search in Google Scholar

Sánchez-Ferrero A, Mata Á, Mateos-Timoneda MA, Rodríguez-Cabello JC, Alonso M, Planell J, Engel E. Development of tailored and self-mineralizing citric acid-crosslinked hydrogels for in situ bone regeneration. Biomaterials. 2015; 68:42–53.Sánchez-FerreroAMataÁMateos-TimonedaMARodríguez-CabelloJCAlonsoMPlanellJEngelEDevelopment of tailored and self-mineralizing citric acid-crosslinked hydrogels for in situ bone regenerationBiomaterials201568425310.1016/j.biomaterials.2015.07.062Search in Google Scholar

eISSN:
1875-855X
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
Medicine, Assistive Professions, Nursing, Basic Medical Science, other, Clinical Medicine