Accesso libero

Simulation of impedance measurements at human forearm within 1 kHz to 2 MHz

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Grimnes S, Martinsen ØG. Bioimpedance. Wiley Encyclopedia of Biomedical Engineering [Internet]. John Wiley & Sons, Inc.; 2006. Available from: dx.doi.org/10.1002/9780471740360.ebs0128GrimnesSMartinsenØGBioimpedance. Wiley Encyclopedia of Biomedical Engineering [Internet]John Wiley & Sons, Inc2006Available fromdx.doi.org/10.1002/9780471740360.ebs0128Open DOISearch in Google Scholar

Secher NJ, Thomsen A, Arnsbo P. Measurement of rapid changes in cardiac stroke volume. An evaluation of the impedance cardiography method. Acta Anaesthesiol Scand. 1977;21(5):353–8. dx.doi.org/10.1111/j.1399-6576.1977.tb01231.xSecherNJThomsenAArnsboPMeasurement of rapid changes in cardiac stroke volumeAn evaluation of the impedance cardiography method. Acta Anaesthesiol Scand19772153538dx.doi.org/10.1111/j.1399-6576.1977.tb01231.xOpen DOISearch in Google Scholar

Quail AW, Traugott FM, Porges WL, White SW. Thoracic resistivity for stroke volume calculation in impedance cardiography. J Appl Physiol. 1981 Jan 1;50(1):191–5.10.1152/jappl.1981.50.1.191QuailAWTraugottFMPorgesWLWhiteSWThoracic resistivity for stroke volume calculation in impedance cardiographyJ Appl Physiol1981Jan 15011915Open DOISearch in Google Scholar

Gratze G, Fortin J, Holler A, Grasenick K, Pfurtscheller G, Wach P, Schönegger J, Kotanko P, Skrabal F. A software package for non-invasive, real-time beat-to-beat monitoring of stroke volume, blood pressure, total peripheral resistance and for assessment of autonomic function. Comput Biol Med. 1998;28(2):121–42. dx.doi.org/10.1016/S0010-4825(98)00005-59684089GratzeGFortinJHollerAGrasenickKPfurtschellerGWachPSchöneggerJKotankoPSkrabalFA software package for non-invasive, real-time beat-to-beat monitoring of stroke volume, blood pressure, total peripheral resistance and for assessment of autonomic functionComput Biol Med199828212142dx.doi.org/10.1016/S0010-4825(98)00005-510.1016/S0010-4825(98)00005-5Search in Google Scholar

Henry IC, Bernstein DP, Banet MJ. Stroke volume obtained from the brachial artery using transbrachial electrical bioimpedance velocimetry. 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2012. p. 142–5.HenryICBernsteinDPBanetMJStroke volume obtained from the brachial artery using transbrachial electrical bioimpedance velocimetry2012Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)2012142–510.1109/EMBC.2012.634589123365852Search in Google Scholar

Enghoff E, Lovheim O. A comparison between the transthoracic electrical impedance method and the direct Fick and the dye dilution methods for cardiac output measurements in man. Scand J Clin Lab Invest. 1979;39(6):585–90. dx.doi.org/10.3109/0036551790910883739429510.3109/00365517909108837EnghoffELovheimOA comparison between the transthoracic electrical impedance method and the direct Fick and the dye dilution methods for cardiac output measurements in manScand J Clin Lab Invest197939658590dx.doi.org/10.3109/00365517909108837394295Search in Google Scholar

Edmunds AT, Godfrey S, Tooley M. Cardiac output measured by transthoracic impedance cardiography at rest, during exercise and at various lung volumes. Clin Sci. 1982;63(2):107–13. dx.doi.org/10.1042/cs063010710.1042/cs06301077083772EdmundsATGodfreySTooleyMCardiac output measured by transthoracic impedance cardiography at rest, during exercise and at various lung volumesClin Sci198263210713dx.doi.org/10.1042/cs06301077083772Open DOISearch in Google Scholar

Judy WV, Powner DJ, Parr K, Demeter R, Bates C, Marshall S. Comparison of electrical impedance and thermal dilution measured cardiac output in the critical care setting. Crit Care Med. 1985;13(4):305. dx.doi.org/10.1097/00003246-198504000-0006810.1097/00003246-198504000-00068JudyWVPownerDJParrKDemeterRBatesCMarshallSComparison of electrical impedance and thermal dilution measured cardiac output in the critical care settingCrit Care Med1985134305dx.doi.org/10.1097/00003246-198504000-00068Open DOISearch in Google Scholar

Appel PL, Kram HB, MackAbee J, Fleming AW, Shoemaker WC. Comparison of measurements of cardiac output by bioimpedance and thermodilution in severely ill surgical patients. Crit Care Med. 1986;14(11):933–5. dx.doi.org/10.1097/00003246-198611000-0000410.1097/00003246-198611000-00004AppelPLKramHBMackAbeeJFlemingAWShoemakerWCComparison of measurements of cardiac output by bioimpedance and thermodilution in severely ill surgical patientsCrit Care Med198614119335dx.doi.org/10.1097/00003246-198611000-000043769504Open DOISearch in Google Scholar

Gotshall RW, Wood VC, Miles DS. Comparison of two impedance cardiographic techniques for measuring cardiac output. Ann Biomed Eng. 1989;17(5):495–505. dx.doi.org/10.1007/BF02368069261042110.1007/BF02368069GotshallRWWoodVCMilesDSComparison of two impedance cardiographic techniques for measuring cardiac outputAnn Biomed Eng1989175495505dx.doi.org/10.1007/BF023680692610421Search in Google Scholar

Bloch KE, Russi EW. Comparison of impedance cardiography to invasive techniques for measurement of cardiac output. Am J Cardiol. 1997;79(6):846–846.9070584BlochKERussiEWComparison of impedance cardiography to invasive techniques for measurement of cardiac outputAm J Cardiol1997796846846Search in Google Scholar

Keren H, Burkhoff D, Squara P. Evaluation of a noninvasive continuous cardiac output monitoring system based on thoracic bioreactance. Am J Physiol - Heart Circ Physiol. 2007 Jul 1;293(1):H583–9. dx.doi.org/10.1152/ajpheart.00195.20071738413210.1152/ajpheart.00195.2007KerenHBurkhoffDSquaraPEvaluation of a noninvasive continuous cardiac output monitoring system based on thoracic bioreactanceAm J Physiol - Heart Circ Physiol2007Jul 12931H5839dx.doi.org/10.1152/ajpheart.00195.200717384132Search in Google Scholar

Pietrobelli A, Nu-ez C, Zingaretti G, Battistini N, Morini P, Wang ZM, Yasumura S, Heymsfield SB. Assessment by bioimpedance of forearm cell mass: a new approach to calibration. Eur J Clin Nutr. 2002 Aug;56(8):723–8. dx.doi.org/10.1038/sj.ejcn.160138410.1038/sj.ejcn.1601384PietrobelliANu-ezCZingarettiGBattistiniNMoriniPWangZMYasumuraSHeymsfieldSBAssessment by bioimpedance of forearm cell mass: a new approach to calibrationEur J Clin Nutr20025687238dx.doi.org/10.1038/sj.ejcn.160138412122547Open DOISearch in Google Scholar

Ohmine Y, Morimoto T, Kinouchi Y, Iritani T, Takeuchi M, Haku M, Nishitani H. Basic study of new diagnostic modality according to non-invasive measurement of the electrical conductivity of tissues. J Med Invest. 2004;51(3-4):218–25. dx.doi.org/10.2152/jmi.51.21810.2152/jmi.51.218OhmineYMorimotoTKinouchiYIritaniTTakeuchiMHakuMNishitaniHBasic study of new diagnostic modality according to non-invasive measurement of the electrical conductivity of tissuesJ Med Invest2004513-421825dx.doi.org/10.2152/jmi.51.21815460909Open DOISearch in Google Scholar

Raja MK. Changes in tissue water content measured with multiple-frequency bioimpedance and metabolism measured with 31P-MRS during progressive forearm exercise. J Appl Physiol. 2006 Oct 1;101(4):1070–5. dx.doi.org/10.1152/japplphysiol.01322.200510.1152/japplphysiol.01322.200516794019RajaMKChanges in tissue water content measured with multiple-frequency bioimpedance and metabolism measured with 31P-MRS during progressive forearm exerciseJ Appl Physiol2006Oct 1101410705dx.doi.org/10.1152/japplphysiol.01322.200516794019Open DOISearch in Google Scholar

Simini F, Bertemes-Filho P. II Latin American Conference on Bioimpedance: 2nd CLABIO,Montevideo,September 30 - October 02, 2015. Springer; 2015. 98 p.SiminiFBertemes-FilhoPII Latin American Conference on Bioimpedance: 2nd CLABIO,MontevideoSeptember 30 - October 02, 2015Springer20159810.1007/978-981-287-928-8Search in Google Scholar

Metshein M, Parve T. Towards a Wearable Device for Capacitive Monitoring of Electrical Bioimpedance of Human Body. [cited 2016 Jan 11]; Available from: www.isbem.org/conf/2015/proc/03.pdfMetsheinMParveTTowards a Wearable Device for Capacitive Monitoring of Electrical Bioimpedance of Human Body2016Available fromwww.isbem.org/conf/2015/proc/03.pdfSearch in Google Scholar

Nahrstaedt H, Schauer T. A bioimpedance measurement device for sensing force and position in neuroprosthetic systems. 4th European Conference of the International Federation for Medical and Biological Engineering [Internet]. Springer; 2009 [cited 2016 Jan 11]. p. 1642–5. Available from: link.springer.com/chapter/10.1007/978-3-540-89208-3_390http://dx.doi.org/10.1007/978-3-540-89208-3_390NahrstaedtHSchauerTA bioimpedance measurement device for sensing force and position in neuroprosthetic systems4th European Conference of the International Federation for Medical and Biological Engineering [Internet]Springer2009link.springer.com/chapter/10.1007/978-3-540-89208-3_390http://dx.doi.org/10.1007/978-3-540-89208-3_39010.1007/978-3-540-89208-3_390Search in Google Scholar

Matejkova M, Vondra V, Halamek J, Soukup L, Plesinger F, Viscor I, Jurak P. Measurement of pulse wave velocity during valsalva and mueller maneuvers by whole body impedance monitor. Computing in Cardiology Conference (CinC), 2014 [Internet]. IEEE; 2014 [cited 2016 Jan 11]. p. 1117–20. Available from: ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7043243MatejkovaMVondraVHalamekJSoukupLPlesingerFViscorIJurakPMeasurement of pulse wave velocity during valsalva and mueller maneuvers by whole body impedance monitorComputing in Cardiology Conference (CinC), 2014 [Internet]. IEEE; 2014 [cited 2016 Jan 11]1117–20Available fromieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7043243Search in Google Scholar

Schwan HP. Electrical properties of tissue and cell suspensions. Adv Biol Med Phys. 1957;5:147. dx.doi.org/10.1016/B978-1-4832-3111-2.50008-01352043110.1016/B978-1-4832-3111-2.50008-0SchwanHPElectrical properties of tissue and cell suspensionsAdv Biol Med Phys19575147dx.doi.org/10.1016/B978-1-4832-3111-2.50008-0Search in Google Scholar

Cole KS, Cole RH. Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys. 1941;9(4):341–51. dx.doi.org/10.1063/1.175090610.1063/1.1750906ColeKSColeRHDispersion and absorption in dielectrics I. Alternating current characteristicsJ Chem Phys19419434151dx.doi.org/10.1063/1.1750906Open DOISearch in Google Scholar

Grimnes S, Martinsen OG. Bioimpedance and Bioelectricity Basics. Academic Press; 2014. 585 p.GrimnesSMartinsenOGBioimpedance and Bioelectricity BasicsAcademic Press201458510.1016/B978-0-12-411470-8.00011-8Search in Google Scholar

Mooser V, Etienne J-D, Farine P-A, Monney P, Perret F, Cecchini M, Gagnebin E, Bornoz C, Tardy Y, Arditi M, Meister J-J, Leuenberger C-E, Saurer E, Mooser E, Waeber B, Brunner HR. Non-invasive measurement of internal diameter of peripheral arteries during the cardiac cycle. J Hypertens. 1988 Dec;6(4):S179-S181. dx.doi.org/10.1097/00004872-198812040-0005310.1097/00004872-198812040-00053MooserVEtienneJ-DFarineP-AMonneyPPerretFCecchiniMGagnebinEBornozCTardyYArditiMMeisterJ-JLeuenbergerC-ESaurerEMooserEWaeberBBrunnerHRNon-invasive measurement of internal diameter of peripheral arteries during the cardiac cycleJ Hypertens198864S179S181dx.doi.org/10.1097/00004872-198812040-000533241196Open DOISearch in Google Scholar

Trazzi S, Omboni S, Santucciu C, Parati G, Mancia G. Variability in arterial diameter and compliance: compliance modulation reserve. J Hypertens. 1992 Aug;10(6):S41-S43. dx.doi.org/10.1097/00004872-199208001-00011TrazziSOmboniSSantucciuCParatiGManciaGVariability in arterial diameter and compliance: compliance modulation reserveJ Hypertens1992106S41S43dx.doi.org/10.1097/00004872-199208001-0001110.1097/00004872-199208001-00011Search in Google Scholar

Gabriel C. Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies. [Internet]. DTIC Document; 1996 [cited 2015 Nov 29]. Available from: oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA309764GabrielCCompilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies. [Internet]DTIC Document; 1996 [cited 2015 Nov 29]. Available fromoai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA30976410.21236/ADA303903Search in Google Scholar

Gabriel C, Gabriel S, Corthout E. The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol. 1996;41(11):2231. dx.doi.org/10.1088/0031-9155/41/11/00110.1088/0031-9155/41/11/001GabrielCGabrielSCorthoutEThe dielectric properties of biological tissues: ILiterature survey. Phys Med Biol199641112231dx.doi.org/10.1088/0031-9155/41/11/0018938024Open DOISearch in Google Scholar

Gabriel S, Lau RW, Gabriel C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol. 1996 Nov 1;41(11):2251–69. dx.doi.org/10.1088/0031-9155/41/11/002893802510.1088/0031-9155/41/11/002GabrielSLauRWGabrielCThe dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHzPhys Med Biol1996Nov 14111225169dx.doi.org/10.1088/0031-9155/41/11/0028938025Search in Google Scholar

Gabriel S, Lau RW, Gabriel C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol. 1996;41(11):2271. dx.doi.org/10.1088/0031-9155/41/11/003GabrielSLauRWGabrielCThe dielectric properties of biological tissues: IIIParametric models for the dielectric spectrum of tissues. Phys Med Biol199641112271dx.doi.org/10.1088/0031-9155/41/11/00310.1088/0031-9155/41/11/0038938026Search in Google Scholar

IEC 60601. Wikipedia, the free encyclopedia [Internet]. 2015 [cited 2015 Dec 5]. Available from: https://en.wikipedia.org/w/index.php?title=IEC_60601&oldid =685994304IEC 60601Wikipedia, the free encyclopedia [Internet]2015[cited 2015 Dec 5]. Available fromen.wikipedia.org/w/index.php?title=IEC_60601&oldid=685994304Search in Google Scholar

Olson WH. Electrical safety. Med Instrum Appl Des [Internet]. 1978 [cited 2015 Dec 5]; Available from: https://eva.fing.edu.uy/pluginfile.php/68296/mod_resource/content/1/c14.pdfOlsonWHElectrical safety. Med Instrum Appl Des [Internet]1978[cited 2015 Dec 5]; Available fromeva.fing.edu.uy/pluginfile.php/68296/mod_resource/content/1/c14.pdfSearch in Google Scholar

Frydrysiak M, Zięba J, Tęsiorowski L, Tokarska M. Textronic system to muscle electrostimulation. PES. 2012;149:0–41.FrydrysiakMZiębaJTęsiorowskiLTokarskaMTextronic system to muscle electrostimulationPES2012149041Search in Google Scholar

Savegnago M, Rodrigues de O F, Iraci R, Jordão J, Afonso A, García Ch P, others. Determinación de composición corporal mediante análisis de impedancia segmentada: consideraciones y aplicaciones prácticas. Rev Chil Nutr. 2010;37(3):262–8. dx.doi.org/10.4067/S0717-75182010000300001SavegnagoMRodriguesde O FIraciRJordãoJAfonsoAGarcía ChPDeterminación de composición corporal mediante análisis de impedancia segmentada: consideraciones y aplicaciones prácticasRev Chil Nutr20103732628dx.doi.org/10.4067/S0717-7518201000030000110.4067/S0717-75182010000300001Search in Google Scholar

Alastruey J, Parker KH, Sherwin SJ. Arterial pulse wave haemodynamics. Anderson 11th International Conference on Pressure Surges [Internet]. 2012 [cited 2015 Dec 6]. p. 401–42. Available from: wwwf.imperial.ac.uk/ssherw/spectralhp/papers/PulseSurges_2012.pdfAlastrueyJParkerKHSherwinSJArterial pulse wave haemodynamicsAnderson 11th International Conference on Pressure Surges [Internet]2012 [cited 2015 Dec 6]401–42Available fromwwwf.imperial.ac.uk/ssherw/spectralhp/papers/PulseSurges_2012.pdfSearch in Google Scholar

Moens–Korteweg equation. Wikipedia, the free encyclopedia [Internet]. 2015 [cited 2015 Dec 6]. Available from: https://en.wikipedia.org/wiki/Moens%E2%80%93Korteweg_equationMoens–Korteweg equationWikipedia, the free encyclopedia [Internet]2015[cited 2015 Dec 6]. Available fromen.wikipedia.org/wiki/Moens%E2%80%93Korteweg_equationSearch in Google Scholar

Li JK-J. Comparative Cardiovascular Dynamics of Mammals. CRC Press; 1995. 176 p.LiJK-JComparative Cardiovascular Dynamics of MammalsCRC Press1995176Search in Google Scholar

Asmar R, Benetos A, Topouchian J, Laurent P, Pannier B, Brisac A-M, Target R, Levy BI. Assessment of Arterial Distensibility by Automatic Pulse Wave Velocity Measurement Validation and Clinical Application Studies. Hypertension. 1995 Sep 1;26(3):485–90. dx.doi.org/10.1161/01.HYP.26.3.48510.1161/01.HYP.26.3.4857649586AsmarRBenetosATopouchianJLaurentPPannierBBrisacA-MTargetRLevyBIAssessment of Arterial Distensibility by Automatic Pulse Wave Velocity Measurement Validation and Clinical Application StudiesHypertension1995Sep 126348590dx.doi.org/10.1161/01.HYP.26.3.485Open DOISearch in Google Scholar

Wilkinson IB, Fuchs SA, Jansen IM, Spratt JC, Murray GD, Cockcroft JR, Webb DJ. Reproducibility of pulse wave velocity and augmentation index measured by pulse wave analysis. J Hypertens. 1998;16(12):2079–84. dx.doi.org/10.1097/00004872-199816121-0003310.1097/00004872-199816121-000339886900WilkinsonIBFuchsSAJansenIMSprattJCMurrayGDCockcroftJRWebbDJReproducibility of pulse wave velocity and augmentation index measured by pulse wave analysisJ Hypertens19981612207984dx.doi.org/10.1097/00004872-199816121-000339886900Open DOISearch in Google Scholar

Salvi P, Lio G, Labat C, Ricci E, Pannier B, Benetos A. Validation of a new non-invasive portable tonometer for determining arterial pressure wave and pulse wave velocity: the PulsePen device. J Hypertens. 2004;22(12):2285–93. dx.doi.org/10.1097/00004872-200412000-0001010.1097/00004872-200412000-0001015614022SalviPLioGLabatCRicciEPannierBBenetosAValidation of a new non-invasive portable tonometer for determining arterial pressure wave and pulse wave velocity: the PulsePen deviceJ Hypertens20042212228593dx.doi.org/10.1097/00004872-200412000-0001015614022Open DOISearch in Google Scholar

Brans YW, Hay WW. Physiological Monitoring and Instrument Diagnosis in Perinatal and Neonatal Medicine. CUP Archive; 1995. 428 p.BransYWHayWW.Physiological Monitoring and Instrument Diagnosis in Perinatal and Neonatal MedicineCUP Archive1995428Search in Google Scholar

Pauca AL. The second peak of the radial artery pressure wave represents aortic systolic pressure in hypertensive and elderly patients. Br J Anaesth. 2004 Mar 19;92(5):651–7. dx.doi.org/10.1093/bja/aeh12110.1093/bja/aeh12115003985PaucaALThe second peak of the radial artery pressure wave represents aortic systolic pressure in hypertensive and elderly patientsBr J Anaesth2004Mar 199256517dx.doi.org/10.1093/bja/aeh12115003985Open DOISearch in Google Scholar

Sigman E, Kolin A, Katz L, Jochim K. Effect of motion on the electrical conductivity of the blood. Am J Physiol Content. 1937;118(4):708–19.10.1152/ajplegacy.1937.118.4.708SigmanEKolinAKatzLJochimKEffect of motion on the electrical conductivity of the bloodAm J Physiol Content1937118470819Open DOISearch in Google Scholar

Edgerton RH. Conductivity of sheared suspensions of ellipsoidal particles with application to blood flow. Biomed Eng IEEE Trans On. 1974;(1):33–43.EdgertonRHConductivity of sheared suspensions of ellipsoidal particles with application to blood flowBiomed Eng IEEE Trans On1974133–4310.1109/TBME.1974.3243594813874Search in Google Scholar

Dellimore JW, Gosling RG. Change in blood conductivity with flow rate. Med Biol Eng. 1975 Nov 1;13(6):904–13. dx.doi.org/10.1007/BF0247809610.1007/BF024780961195884DellimoreJWGoslingRGChange in blood conductivity with flow rateMed Biol Eng1975Nov 113690413dx.doi.org/10.1007/BF024780961195884Open DOISearch in Google Scholar

Sakamoto K, Kanai H. Electrical Characteristics of Flowing Blood. IEEE Trans Biomed Eng. 1979 Dec;BME-26(12):686–95. dx.doi.org/10.1109/TBME.1979.326459SakamotoKKanaiHElectrical Characteristics of Flowing BloodIEEE Trans Biomed Eng1979Dec;BME-2612686–95dx.doi.org/10.1109/TBME.1979.326459Open DOISearch in Google Scholar

Hause LL, Gayon F., Aleksza ME. Impedance measurements during simulated blood flow. Engineering in Medicine and Biology Society, 1989 Images of the Twenty-First Century, Proceedings of the Annual International Conference of the IEEE Engineering in. 1989. Vol. 4. p. 1232. dx.doi.org/10.1109/iembs.1989.96169HauseLLGayonF.AlekszaMEImpedance measurements during simulated blood flowEngineering in Medicine and Biology Society1989 Images of the Twenty-First Century, Proceedings of the Annual International Conference of the IEEE Engineering in1989Vol. 41232dx.doi.org/10.1109/iembs.1989.96169Open DOISearch in Google Scholar

Shmulewitz A, Wallace AA. Apparatus and methods of bioelectrical impedance analysis of blood flow. US6095987 A, 2000.ShmulewitzAWallaceAAApparatus and methods of bioelectrical impedance analysis of blood flowUS6095987 A2000Search in Google Scholar

Gaw RL, Cornish BH, Thomas BJ. The Electrical Impedance of Pulsatile Blood Flowing Through Rigid Tubes: A Theoretical Investigation. IEEE Trans Biomed Eng. 2008 Feb;55(2):721–7. dx.doi.org/10.1109/TBME.2007.90353110.1109/TBME.2007.90353118270009GawRLCornishBHThomasBJThe Electrical Impedance of Pulsatile Blood Flowing Through Rigid Tubes: A Theoretical InvestigationIEEE Trans Biomed Eng20085527217dx.doi.org/10.1109/TBME.2007.90353118270009Open DOISearch in Google Scholar

Corciova C, Ciorap R, Zaharia D, Matei D. On using impedance plethysmography for estimation of blood flow. 2011 IEEE International Workshop on Medical Measurements and Applications Proceedings (MeMeA). 2011. p. 84–7.CorciovaCCiorapRZahariaDMateiDOn using impedance plethysmography for estimation of blood flow2011 IEEE International Workshop on Medical Measurements and Applications Proceedings (MeMeA)201184–710.1109/MeMeA.2011.5966672Search in Google Scholar

Reddy GN, Saha S. Electrical and dielectric properties of wet bone as a function of frequency. Biomed Eng IEEE Trans On. 1984;(3):296–303ReddyGNSahaSElectrical and dielectric properties of wet bone as a function of frequencyBiomed Eng IEEE Trans On19843296–30310.1109/TBME.1984.3252686715001Search in Google Scholar