Accesso libero

Improving Conductivity Image Quality Using Block Matrix-based Multiple Regularization (BMMR) Technique in EIT: A Simulation Study

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Webster JG, Electrical impedance tomography. Adam Hilger Series of Biomedical Engineering, Adam Hilger, New York, USA 1990.WebsterJGElectrical impedance tomography. Adam Hilger Series of Biomedical EngineeringAdam Hilger, New York, USA1990Search in Google Scholar

Cheney M, David Isaacson, Jonathan C. Newell. Electrical Impedance Tomography. SIAM Review, 41(1), 85–101, 1999. 10.1137/S003614459833361310.1137/S0036144598333613CheneyMDavidIsaacsonJonathanC. NewellElectrical Impedance TomographySIAM Review41185101199910.1137/S0036144598333613Open DOISearch in Google Scholar

Bayford RH. Bioimpedance Tomography (Electrical Impedance Tomography). Annual Review of Biomedical Engineering, 8, 63-91, 2006. 10.1146/annurev.bioeng.8.061505.0957161683455210.1146/annurev.bioeng.8.061505.095716BayfordRHBioimpedance Tomography (Electrical Impedance Tomography)Annual Review of Biomedical Engineering86391200610.1146/annurev.bioeng.8.061505.095716Search in Google Scholar

Denyer CWL, Electronics for Real-Time and Three-Dimensional Electrical Impedance Tomographs, PhD Thesis, Oxford Brookes University, 1996DenyerCWLElectronics for Real-Time and Three-Dimensional Electrical Impedance TomographsPhD ThesisOxford Brookes University1996Search in Google Scholar

Chen Z, Brown EN and Barbieri R. Assessment of Autonomic Control and Respiratory Sinus Arrhythmia Using Point Process Models of Human Heart Beat Dynamics. IEEE Transactions on Electromagnetic Compatibility, 56(7), 1791-1802, 2009.ChenZBrownENBarbieriRAssessmentof Autonomic Control and Respiratory Sinus Arrhythmia Using Point Process Models of Human Heart Beat DynamicsIEEE Transactions on Electromagnetic Compatibility56717911802200910.1109/TBME.2009.2016349Search in Google Scholar

Fabrizi L , McEwan A, Oh T, Woo EJ, Holder DS. An electrode addressing protocol for imaging brain function with electrical impedance tomography using a 16-channel semi-parallel system. Physiol. Meas., 30, S85–S101, 2009. 10.1088/0967-3334/30/6/S06FabriziLMcEwanAOhTWooEJHolderDSAn electrode addressing protocol for imaging brain function with electrical impedance tomography using a 16-channel semi-parallel systemPhysiol. Meas30S85–S101200910.1088/0967-3334/30/6/S0610.1088/0967-3334/30/6/S06Search in Google Scholar

Bagshaw AP, Liston AD, Bayford RH, Tizzard A, Gibson AP, Tidswell AT, Sparkes MK, Dehghani H, Binnie CD and Holder DS. Electrical impedance tomography of human brain function using reconstruction algorithms based on the finite element method. NeuroImage 20, 752–764, 2003. 10.1016/S1053-8119(03)00301-X1456844910.1016/S1053-8119(03)00301-XBagshawAPListonADBayfordRHTizzardAGibsonAPTidswellATSparkesMKDehghaniHBinnieCDHolderDSElectrical impedance tomography of human brain function using reconstruction algorithms based on the finite element methodNeuroImage20752764200310.1016/S1053-8119(03)00301-XSearch in Google Scholar

Murphy D, Burton P, Coombs R, Tarassenko L and Rolfe P. Impedance Imaging in the Newborn. Clin. Phys. Physiol. Meas., 8, Suppl. A, 131-40, 1987.10.1088/0143-0815/8/4A/0173568562MurphyDBurtonPCoombsRTarassenkoLRolfePImpedance Imaging in the NewbornClin. Phys. Physiol. Meas8Suppl. A131401987Open DOISearch in Google Scholar

Hinz J, Neumann P, Dudykevych T, Andersson LG, Wrigge H, Burchardi H, and Hedenstierna G. Regional Ventilation by Electrical Impedance Tomography: A Comparison With Ventilation Scintigraphy in Pigs. Chest, 124, 314–322, 2003. 10.1378/chest.124.1.31410.1378/chest.124.1.31412853539HinzJNeumannPDudykevychTAnderssonLGWriggeHBurchardiHHedenstiernaGRegional Ventilation by Electrical Impedance Tomography: A Comparison With Ventilation Scintigraphy in PigsChest124314322200310.1378/chest.124.1.31412853539Open DOISearch in Google Scholar

Noordegraaf AV, Faes TJC, Janse A, Marcus JT, Heethaar RM, Postmus PE and de Vries PMJM. Improvement of cardiac imaging in electrical impedance tomography by means of a new electrode configuration. Physiol. Meas., 17, 179–188, 1996. 10.1088/0967-3334/17/3/004NoordegraafAVFaesTJCJanseAMarcusJTHeethaarRMPostmus PE and de Vries PMJM. Improvement of cardiac imaging in electrical impedance tomography by means of a new electrode configurationPhysiol. Meas17179–188199610.1088/0967-3334/17/3/00410.1088/0967-3334/17/3/0048870058Search in Google Scholar

Hope TA and Iles SE. Technology review: The use of electrical impedance scanning in the detection of breast cancer. Breast Cancer Res., 6, 69-74, 2004. 10.1186/bcr74414979909HopeTAIlesSETechnologyreview: The use of electrical impedance scanning in the detection of breast cancerBreast Cancer Res66974200410.1186/bcr74410.1186/bcr74440064814979909Search in Google Scholar

Dickin F and Wang M. Electrical resistance tomography for process applications. Meas. Sci. and Technol., 7, 247, 1996. 10.1088/0957-0233/7/3/005DickinFWangMElectrical resistance tomography for process applicationsMeas. Sci. and Technol7247199610.1088/0957-0233/7/3/00510.1088/0957-0233/7/3/005Search in Google Scholar

Stephensona DR, Rodgersa TL, Manna R and York TA. Application of Three-Dimensional Electrical Impedance Tomography to Investigate Fluid Mixing in a Stirred Vessel. 13th European Conference on Mixing, London, 14-17 April 2009.StephensonaDRRodgersaTLMannaRYorkTAApplicationof Three-Dimensional Electrical Impedance Tomography to Investigate Fluid Mixing in a Stirred Vessel13th European Conference on MixingLondon14172009Search in Google Scholar

Kotre CJ. Subsurface electrical impedance imaging: measurement strategy, image reconstruction and in vivo results. Physiol. Meas., 17, A197–A204, 1996. 10.1088/0967-3334/17/4A/024KotreCJSubsurface electrical impedance imaging: measurement strategy, image reconstruction and in vivo resultsPhysiol. Meas17A197–A204199610.1088/0967-3334/17/4A/02410.1088/0967-3334/17/4A/024Search in Google Scholar

Linderholm P, Marescot L, Loke MH, and Renaud P. Cell Culture Imaging Using Microimpedance Tomography. IEEE Transactions on Biomedical Engineering, 55(1), 138-146, 2008. 10.1109/TBME.2007.91064910.1109/TBME.2007.910649LinderholmPMarescotLLokeMHRenaudPCell Culture Imaging Using Microimpedance TomographyIEEE Transactions on Biomedical Engineering551138146200810.1109/TBME.2007.91064918232355Open DOISearch in Google Scholar

Denyer CWL. Electronics for real-time and three-dimensional electrical impedance tomographs. PhD Thesis Oxford Brookes University, January 1996.DenyerCWLElectronics for real-time and three-dimensional electrical impedance tomographsPhD Thesis Oxford Brookes University1996Search in Google Scholar

Huang CN, Yu FM and Chung HY. The Scanning Data Collection Strategy for Enhancing the Quality of Electrical Impedance Tomography. IEEE Transactions on Instrumentation And Measurement, 57(6), 1193-1198, 2008. 10.1109/TIM.2007.91514910.1109/TIM.2007.915149HuangCNYuFMChungHYThe Scanning Data Collection Strategy for Enhancing the Quality of Electrical Impedance TomographyIEEE Transactions on Instrumentation And Measurement57611931198200810.1109/TIM.2007.915149Open DOISearch in Google Scholar

Metherall P. Three Dimensional Electrical Impedance Tomography of the Human Thorax. PhD Thesis, University of Sheffield, January 1998.MetherallPThree Dimensional Electrical Impedance Tomography of the Human ThoraxPhD ThesisUniversity of Sheffield1998Search in Google Scholar

Brown BH. Medical impedance tomography and process impedance tomography: a brief review. Measurement Science & Technology, 12, 991-996, 2001. 10.1088/0957-0233/12/8/30110.1088/0957-0233/12/8/301BrownBHMedical impedance tomography and process impedance tomography: a brief reviewMeasurement Science & Technology12991996200110.1088/0957-0233/12/8/301Open DOISearch in Google Scholar

Hou WD, and Mo YL. Increasing image resolution in electrical impedance tomography. Electronics Letters, 38, 701-702, 2002. 10.1049/el:2002047710.1049/el:20020477HouWDMoYLIncreasing image resolution in electrical impedance tomographyElectronics Letters38701702200210.1049/el:20020477Open DOISearch in Google Scholar

Bera TK and Nagaraju J. Studying the Boundary Data Profile of A Practical Phantom for Medical Electrical Impedance Tomography with Different Electrode Geometries. Proceedings of The World Congress on Medical Physics and Biomedical Engineering-2009 Sept 7–12, 2009, Munich, Germany, IFMBE Proceedings 25/II, pp. 925–929. 10.1007/978-3-642-03879-2_258BeraTKNagarajuJStudying the Boundary Data Profile of A Practical Phantom for Medical Electrical Impedance Tomography with Different Electrode GeometriesProceedings of The World Congress on Medical Physics and Biomedical Engineering-2009 Sept 7–122009Munich, GermanyIFMBE Proceedings 25/II92592910.1007/978-3-642-03879-2_25810.1007/978-3-642-03879-2_258Search in Google Scholar

Bera TK and Nagaraju J. A Stainless Steel Electrode Phantom to Study the Forward Problem of Electrical Impedance Tomography (EIT). Sensors & Transducers Journal, 104(5), 33-40, 2009.BeraTKNagarajuJA Stainless Steel Electrode Phantom to Study the Forward Problem of Electrical Impedance Tomography (EIT)Sensors & Transducers Journal104533402009Search in Google Scholar

Bera TK and Nagaraju J. A Simple Instrumentation Calibration Technique for Electrical Impedance Tomography (EIT) Using A 16 Electrode Phantom. Proceedings of The Fifth Annual IEEE Conference on Automation Science and Engineering (IEEE CASE 2009), Bangalore, August 22 to 25, pp. 347-352. 10.1109/COASE.2009.5234117BeraTKNagarajuJA Simple Instrumentation Calibration Technique for Electrical Impedance Tomography (EIT) Using A 16 Electrode Phantom34735210.1109/COASE.2009.523411710.1109/COASE.2009.5234117Search in Google Scholar

Holder DS, Hanquan Y and Rao A. Some practical biological phantoms for calibrating multifrequency electrical impedance tomography. Physiol. Meas., 17, A167-A177, 1996. 10.1088/0967-3334/17/4A/02110.1088/0967-3334/17/4A/0219001615HolderDSHanquanYRaoASome practical biological phantoms for calibrating multifrequency electrical impedance tomographyPhysiol. Meas17A167A177199610.1088/0967-3334/17/4A/021Open DOISearch in Google Scholar

Bera TK and Nagaraju J. Resistivity Imaging of a Reconfigurable Phantom With Circular Inhomogeneities in 2D-Electrical Impedance Tomography. Measurement, 44(3), 518-526, 2011. 10.1016/j.measurement.2010.11.01510.1016/j.measurement.2010.11.015BeraTKNagarajuJResistivity Imaging of a Reconfigurable Phantom With Circular Inhomogeneities in 2D-Electrical Impedance TomographyMeasurement443518526201110.1016/j.measurement.2010.11.015Open DOISearch in Google Scholar

Bera TK and Nagaraju J. A Reconfigurable Practical Phantom for Studying the 2 D Electrical Impedance Tomography (EIT) Using a FEM Based Forward Solver, 10th International Conference on Biomedical Applications of Electrical Impedance Tomography (EIT 2009), School of Mathematics, The University of Manchester, UK, 16th-19th June 2009.BeraTKNagarajuJA Reconfigurable Practical Phantom for Studying the 2 D Electrical Impedance Tomography (EIT) Using a FEM Based Forward Solver10th International Conference on Biomedical Applications of Electrical Impedance Tomography (EIT 2009 School of MathematicsThe University of ManchesterUK16th-19th June 2009Search in Google Scholar

Lionheart WRB. EIT reconstruction algorithms: pitfalls, challenges and recent developments. Physiol. Meas., 25, 125–142, 2004. 10.1088/0967-3334/25/1/021LionheartWRBEIT reconstruction algorithms: pitfalls, challenges and recent developmentsPhysiol. Meas25125–142200410.1088/0967-3334/25/1/02110.1088/0967-3334/25/1/02115005311Search in Google Scholar

Kolehmainen V, Vauhkonen M, Karjalainen PA, Kaipio JP. Assessment of errors in static electrical impedance tomography with adjacent and trigonometric current patterns. Physiol Meas. 18(4), 289-303, 1997. 10.1088/0967-3334/18/4/003941386310.1088/0967-3334/18/4/003KolehmainenVVauhkonenMKarjalainenPAKaipioJPAssessment of errors in static electrical impedance tomography with adjacent and trigonometric current patternsPhysiol Meas184289303199710.1088/0967-3334/18/4/003Search in Google Scholar

Bera TK and Nagaraju J. A Study of Practical Biological Phantoms with Simple Instrumentation for Electrical Impedance Tomography (EIT). Proceedings of IEEE International Instrumentation and Measurement Technology Conference (I2MTC2009), Singapore, 5th - 7th May 2009, pp 511-516. 10.1109/IMTC.2009.5168503BeraTKNagarajuJA Study of Practical Biological Phantoms with Simple Instrumentation for Electrical Impedance Tomography (EIT)Proceedings of IEEE International Instrumentation and Measurement Technology Conference (I2MTC2009)Singapore5th - 7th May200951151610.1109/IMTC.2009.516850310.1109/IMTC.2009.5168503Search in Google Scholar

Riu PJ, Rosell J, Lozano A and Pallà-Areny R. Multi-frequency static imaging in electrical impedance tomography: Part 1 instrumentation requirements. Med. Biol. Eng. Comput., 33(6), 784-792, 1995. 10.1007/BF02523010855895110.1007/BF02523010RiuPJRosellJLozanoAPallà-ArenyRstatic imaging in electrical impedance tomography: Part 1 instrumentation requirements Med. Biol. Eng. Comput336784792199510.1007/BF02523010Search in Google Scholar

Bera TK and Nagaraju J. A Multifrequency Constant Current Source for Medical Electrical Impedance Tomography. Proceedings of the IEEE International Conference on Systems in Medicine and Biology 2010 (IEEE ICSMB 2010), 16th-18th Dec’2010, Kharagpur, India, pp-290-295. 10.1109/ICSMB.2010.5735387BeraTKNagarajuJA Multifrequency Constant Current Source for Medical Electrical Impedance TomographyProceedings of the IEEE International Conference on Systems in Medicine and Biology 2010 (IEEE ICSMB 2010), 16th-18th Dec’2010Kharagpur, India29029510.1109/ICSMB.2010.573538710.1109/ICSMB.2010.5735387Search in Google Scholar

Loh WW, Pinheiro PAT, Dickin FJ and Waterfall RC. Low common mode error data collection strategy for electrical resistance tomography. Electronics Letters, 34(15), 1998. 10.1049/el:19980846LohWWPinheiroPATDickinFJWaterfallRCLow common mode error data collection strategy for electrical resistance tomographyElectronics Letters3415199810.1049/el:1998084610.1049/el:19980846Search in Google Scholar

Bushberg JT, Seibert JA, Leidholdt Jr. EM and Boone JM. The Essential Physics of Medical Imaging. Lippincott Williams & Wilkins; 2nd edition, 2001.BushbergJTSeibertJALeidholdtJr. EMBooneJMThe Essential Physics of Medical ImagingLippincott Williams & Wilkins2nd edition2001Search in Google Scholar

Kim MC, Kim S, Kim KY and Lee YJ. Regularization Methods in Electrical Impedance Tomography Technique for The Two-Phase Flow Visualization. Int. Comm. Heat Mass Transfer, 28(6), 173-782, 2001. 10.1016/S0735-1933(01)00281-0KimMCKimSKimKYLeeYJRegularization Methods in Electrical Impedance Tomography Technique for The Two-Phase Flow VisualizationInt. Comm. Heat Mass Transfer286173782200110.1016/S0735-1933(01)00281-010.1016/S0735-1933(01)00281-0Search in Google Scholar

Soleimani M and Lionheart WRB. Nonlinear image reconstruction in electrical capacitance tomography using experimental data. Meas. Sci. Technol., 16(10), 1987–1996, 2005. 10.1088/0957-0233/16/10/01410.1088/0957-0233/16/10/014SoleimaniMLionheartWRBNonlinear image reconstruction in electrical capacitance tomography using experimental dataMeas. Sci. Technol161019871996200510.1088/0957-0233/16/10/014Open DOISearch in Google Scholar

Niu H., Guo P., Ji L., Zhao Q. and Jiang T. Improving image quality of diffuse optical tomography with a projection-error-based adaptive regularization method. Optics Express, 16(17), 12423, 2008. 10.1364/OE.16.0124231871147910.1364/OE.16.012423NiuH.GuoP.JiL.ZhaoQ.JiangTImproving image quality of diffuse optical tomography with a projection-error-based adaptive regularization methodOptics Express161712423200810.1364/OE.16.012423Search in Google Scholar

Biswas SK, Rajan K, Vasu RM. Regional sub-block matrices based multiple regularization and biomedical image reconstruction. Systems in Medicine and Biology (ICSMB), 2010 International Conference on, 16-18 Dec. 2010, pp 61 - 66.BiswasSKRajanKVasuRMRegional sub-block matrices based multiple regularization and biomedical image reconstructionSystems in Medicine and Biology (ICSMB)2010International Conference on, 16-18 Dec. 2010616610.1109/ICSMB.2010.5735346Search in Google Scholar

Biswas SK, Rajan K, Vasu RM. Diffuse optical tomographic imager using a single light source. J. Appl. Phys., 105(2), 024702, 2009. 10.1063/1.304001610.1063/1.3040016BiswasSKRajanKVasuRMDiffuse optical tomographic imager using a single light sourceJ. Appl. Phys1052024702200910.1063/1.3040016Open DOISearch in Google Scholar

Yorkey TJ. Comparing reconstruction methods for electrical impedance tomography, PhD thesis, University of. Wisconsin at Madison, Madison, WI 53706, 1986.YorkeyTJComparing reconstruction methods for electrical impedance tomographyPhD thesisUniversity of. Wisconsin at MadisonMadisonWI 537061986Search in Google Scholar

Holder DS. Electrical impedance tomography: methods, history and applications. (Series in Medical Physics and Biomedical Engineering), Institute of Physics Publishing Ltd., 2005.HolderDSElectrical impedance tomography: methods, history and applications(Series in Medical Physics and Biomedical Engineering)Institute of Physics Publishing Ltd200510.1201/9781420034462Search in Google Scholar

Grootveld CJ. Measuring and Modeling of Concentrated Settling Suspensions Using Electrical Impedance Tomography. PhD Thesis, Delft University of Technology, The Netherlands, 1996.GrootveldCJMeasuring and Modeling of Concentrated Settling Suspensions Using Electrical Impedance TomographyPhD ThesisDelft University of TechnologyThe Netherlands1996Search in Google Scholar

Adler A, Guardo R. Electrical impedance tomography: regularized imaging and contrast detection. IEEE Trans. Med Imag., 15(2), 170- 179, 1996. 10.1109/42.49141810.1109/42.491418AdlerAGuardoRElectrical impedance tomography: regularized imaging and contrast detectionIEEE Trans. Med Imag152170 179199610.1109/42.49141818215899Open DOISearch in Google Scholar

Pogue BW, Willscher C, McBride TO, Osterberg UL, and Paulsen KD. Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography. Med. Phys., 27, 2693-2700, 2000. 10.1118/1.13239841119095210.1118/1.1323984PogueBWWillscherCMcBrideTOOsterbergULPaulsenKDContrast-detail analysis for detection and characterization with near-infrared diffuse tomographyMed. Phys2726932700200010.1118/1.132398411190952Search in Google Scholar

Bera TK and Nagaraju J. A FEM-Based Forward Solver for Studying the Forward Problem of Electrical Impedance Tomography (EIT) with A Practical Biological Phantom. Proceedings of IEEE International Advance Computing Conference' 2009 (IEEE IACC - 2009), 6-7th March 2009, Patiala, Punjab, India, pp 1375 - 1381. 10.1109/IADCC.2009.4809217BeraTKNagarajuJA FEM-Based Forward Solver for Studying the Forward Problem of Electrical Impedance Tomography (EIT) with A Practical Biological PhantomProceedings of IEEE International Advance Computing Conference' 2009 (IEEE IACC - 2009), 6-7th March 2009Patiala, Punjab, India1375138110.1109/IADCC.2009.480921710.1109/IADCC.2009.4809217Search in Google Scholar

Reddy JN. An Introduction to the Finite Element Method. 3rd Ed., 2nd Reprint, TATA McGraw-Hill Pub. Co. Ltd, 2006.ReddyJNAn Introduction to the Finite Element MethodTATA McGraw-Hill Pub. Co. Ltd2006Search in Google Scholar

Graham BM. Enhancements in Electrical Impedance Tomography (EIT) Image Reconstruction for 3D Lung Imaging. PhD thesis, University of Ottawa, April 2007.GrahamBMEnhancements in Electrical Impedance Tomography (EIT) Image Reconstruction for 3D Lung ImagingPhD thesisUniversity of Ottawa2007Search in Google Scholar

Arridge SR. Optical tomography in medical imaging. Inverse Problems, 15, R41–R93, 1999. 10.1088/0266-5611/15/2/02210.1088/0266-5611/15/2/022ArridgeSROptical tomography in medical imagingInverse Problems15R41R93199910.1088/0266-5611/15/2/022Open DOISearch in Google Scholar

Bera TK, Biswas SK, Rajan K and Nagaraju J. Improving Image Quality in Electrical Impedance Tomography (EIT) Using Projection Error Propagation-Based Regularization (PEPR) Technique: A Simulation Study. Journal of Electrical Bioimpedance, 2, 2–12, 2011. 10.5617/jeb.158BeraTKBiswasSKRajanKNagarajuJImproving Image Quality in Electrical Impedance Tomography (EIT) Using Projection Error Propagation-Based Regularization (PEPR) Technique: A Simulation StudyJournal of Electrical Bioimpedance2212201110.5617/jeb.15810.5617/jeb.158Search in Google Scholar