Accesso libero

MicroRNAs: potential regulators of airway smooth muscle cell plasticity involved in asthma-induced airway remodeling

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Pepe C, Foley S, Shannon J, Lemiere C, Olivenstein R, Ernst P, et al. Differences in airway remodeling between subjects with severe and moderate asthma. J Allergy Clin Immunol. 2005; 116:544-9.10.1016/j.jaci.2005.06.01116159622Search in Google Scholar

2. Dekkers BGJ, Maarsingh H, Meurs H, Gosens R. Airway structural components drive airway smooth muscle remodeling in asthma. Proc Am Thorac Soc. 2009; 6:683-92.10.1513/pats.200907-056DP20008876Open DOISearch in Google Scholar

3. Bai TR. Evidence for airway remodeling in chronic asthma. Curr Opin Allergy Clin Immunol. 2010; 10:82-6.10.1097/ACI.0b013e32833363b219858714Open DOISearch in Google Scholar

4. Kuo C, Lim S, King NJC, Bartlett NW, Walton RP, Zhu J, et al. Rhinovirus infection induces expression of airway remodelling factors in vitro and in vivo. Respirology. 2011; 16:367-77.10.1111/j.1440-1843.2010.01918.x21199160Open DOISearch in Google Scholar

5. Leigh R, Ellis R, Wattie JN, Hirota JA, Matthaei KI, Foster PS, et al. Type 2 cytokines in the pathogenesis of sustained airway dysfunction and airway remodeling in mice. Am J Respir Crit Care Med. 2004; 169:860-7.10.1164/rccm.200305-706OC14701709Search in Google Scholar

6. Hakonarson H, Maskeri N, Carter C, Grunstein MM. Regulation of TH1-and TH2-type cytokine expression and action in atopic asthmatic sensitized airway smooth muscle. J Clin Invest. 1999; 103:1077-88.10.1172/JCI580940826210194481Open DOISearch in Google Scholar

7. Dekkers BG, Bos IS, Zaagsma J, H. M. Functional consequences of human airway smooth muscle phenotype plasticity. Br J Pharmacol. 2012 166:359-67.10.1111/j.1476-5381.2011.01773.x341566022053853Search in Google Scholar

8. Hirota JA, Nguyen TTB, Schaafsma D, Sharma P, Tran T. Airway smooth muscle in asthma: phenotype plasticity and function. Pulm Pharmacol Ther. 2009; 22:370-8.10.1016/j.pupt.2008.12.00419114115Open DOISearch in Google Scholar

9. Roscioni SS, Prins AG, Elzinga CRS, Menzen MH, Dekkers BGJ, Halayko AJ, et al. Protein kinase A and the exchange protein directly activated by cAMP (Epac) modulate phenotype plasticity in human airway smooth muscle. Br J Pharmacol. 2011; 164: 958-69.10.1111/j.1476-5381.2011.01354.x319591821426315Search in Google Scholar

10. Chuang JC, Jones PA. Epigenetics and microRNAs. Pediatr Res. 2007; 61:17R-23R.10.1203/pdr.0b013e318045760e17413846Search in Google Scholar

11. Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 2010; 79:351-79.10.1146/annurev-biochem-060308-103103Open DOISearch in Google Scholar

12. Tsai LM, Yu D. MicroRNAs in common diseases and potential therapeutic applications. Clin Exp Pharmacol Physiol. 2010; 37:102-7.10.1111/j.1440-1681.2009.05269.xOpen DOISearch in Google Scholar

13. Bartel DP. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell. 2004; 116:281-97.10.1016/S0092-8674(04)00045-5Search in Google Scholar

14. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993; 75: 843-54.10.1016/0092-8674(93)90529-YSearch in Google Scholar

15. Friedman RC, Farh KKH, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009; 19:92-105.10.1101/gr.082701.108261296918955434Search in Google Scholar

16. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA. 2004; 101:2999-3004.10.1073/pnas.030732310136573414973191Open DOISearch in Google Scholar

17. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003; 425:415-9.10.1038/nature0195714508493Search in Google Scholar

18. Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNAprocessing. Genes Dev. 2004; 18:3016-27.10.1101/gad.126250453591315574589Open DOISearch in Google Scholar

19. Berezikov E, Chung WJ, Willis J, Cuppen E, Lai EC. Mammalian mirtron genes. Mol Cell. 2007; 28:328-36.10.1016/j.molcel.2007.09.028276338417964270Open DOISearch in Google Scholar

20. Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA. 2004; 10: 1957-66.10.1261/rna.7135204137068415525708Open DOISearch in Google Scholar

21. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004; 23:4051-60.10.1038/sj.emboj.760038552433415372072Open DOISearch in Google Scholar

22. Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol. 2006; 13:1097-101.10.1038/nsmb116717099701Open DOISearch in Google Scholar

23. Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, et al. Clustering and conservation patterns of human microRNAs. Nucleic Acids Res. 2005; 33: 2697-706.10.1093/nar/gki567111074215891114Open DOISearch in Google Scholar

24. Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005; 6: 376-85.10.1038/nrm164415852042Open DOISearch in Google Scholar

25. Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 2009; 10:126-39.10.1038/nrm263219165215Open DOISearch in Google Scholar

26. Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA. 2005; 11: 241-7.10.1261/rna.7240905137071315701730Open DOISearch in Google Scholar

27. Kim YK, Kim VN. Processing of intronic microRNAs. EMBO J. 2007; 26:775-83.10.1038/sj.emboj.7601512179437817255951Open DOISearch in Google Scholar

28. Lund E, Göttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science. 2004; 303:95-8.10.1126/science.109059914631048Search in Google Scholar

29. Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003; 17:3011-6.10.1101/gad.115880330525214681208Search in Google Scholar

30. Koscianska E, Starega-Roslan J, Krzyzosiak WJ. The Role of Dicer Protein Partners in the Processing of MicroRNA Precursors. PLoS ONE. 2011; 6:e28548.10.1371/journal.pone.0028548323224822163034Open DOISearch in Google Scholar

31. Lee Y, Hur I, Park SY, Kim YK, Suh MR, Kim VN. The role of PACT in the RNA silencing pathway. EMBO j. 2006; 25:522-32.10.1038/sj.emboj.7600942138352716424907Open DOISearch in Google Scholar

32. Zhou H, Huang X, Cui H, Luo X, Tang Y, Chen S, et al. miR-155 and its star-form partner miR-155* cooperatively regulate type I interferon production by human plasmacytoid dendritic cells. Blood. 2010; 116:5885-94.10.1182/blood-2010-04-28015620852130Search in Google Scholar

33. Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z, et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell. 2010; 39:133-44.10.1016/j.molcel.2010.06.01020603081Open DOISearch in Google Scholar

34. Rainer J, Ploner C, Jesacher S, Ploner A, Eduardoff M, Mansha M, et al Glucocorticoid-regulated microRNAs and mirtrons in acute lymphoblastic leukemia. Leukemia. 2009; 23:746-52.10.1038/leu.2008.37019148136Open DOISearch in Google Scholar

35. Havens MA, Reich AA, Duelli DM, Hastings ML. Biogenesis of mammalian microRNAs by a noncanonical processing pathway. Nucleic Acids Res. 2012. [Epub ahead of print]10.1093/nar/gks026337886922270084Search in Google Scholar

36. Ender C, Krek A, Friedl­nder MR, Beitzinger M, Weinmann L, Chen W, et al. A human snoRNA with microRNA-like functions. Mol Cell. 2008; 32:519-28.10.1016/j.molcel.2008.10.01719026782Open DOISearch in Google Scholar

37. Kawahara Y, Mieda-Sato A. TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes. Proc Natl Acad Sci U S A 2012; 109:3347-52.10.1073/pnas.1112427109329527822323604Open DOISearch in Google Scholar

38. Sakamoto S, Aoki K, Higuchi T, Todaka H, Morisawa K, Tamaki N, et al. The NF90-NF45 complex functions as a negative regulator in the microRNA processing pathway. Mol Cell Biol. 2009; 29:3754-69.10.1128/MCB.01836-08269874519398578Search in Google Scholar

39. Michlewski G, C­ceres JF. Antagonistic role of hnRNP A1 and KSRP in the regulation of let-7a biogenesis. Nat Struct Mol Biol. 2010; 17:1011-8.10.1038/nsmb.1874292302420639884Search in Google Scholar

40. Pan L, Gong Z, Zhong Z, Dong Z, Liu Q, Le Y, et al. Lin-28 reactivation is required for let-7 repression and proliferation in human small cell lung cancer cells. Mol Cell Biochem. 2011; 355:257-63.10.1007/s11010-011-0862-x21553022Search in Google Scholar

41. Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008; 9:102-14.10.1038/nrg2290Open DOISearch in Google Scholar

42. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009; 136:215-33.10.1016/j.cell.2009.01.002Search in Google Scholar

43. Schwarz DS, Hutv­gner G, Du T, Xu Z, Aronin N, PD. Z. Asymmetry in the assembly of the RNAi enzyme complex. Cell. 2003; 115:199-208.10.1016/S0092-8674(03)00759-1Search in Google Scholar

44. Xiao C, Rajewsky K. MicroRNA control in the immune system: basic principles. Cell. 2009; 136:26-36.10.1016/j.cell.2008.12.02719135886Search in Google Scholar

45. Vasudevan S, Steitz JA. AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute2. Cell. 2007; 128:1105-18.10.1016/j.cell.2007.01.038343038217382880Search in Google Scholar

46. Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007; 318:1931-4.10.1126/science.114946018048652Search in Google Scholar

47. Wang Y, Liang Y, Lu Q. MicroRNA epigenetic alterations: predicting biomarkers and therapeutic targets in human diseases. Clin Genet. 2008; 74:307-15.10.1111/j.1399-0004.2008.01075.x18713257Open DOISearch in Google Scholar

48. Yekta S, Shih I. MicroRNA-directed cleavage of HOXB8 mRNA. Science. 2004; 304:594-6.10.1126/science.109743415105502Search in Google Scholar

49. Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 2005; 123:631-40.10.1016/j.cell.2005.10.02216271387Search in Google Scholar

50. Grosshans H, Slack FJ. Micro-RNAs: small is plentiful. J Cell Biol. 2002; 156:17-21.10.1083/jcb.200111033217359511781331Open DOISearch in Google Scholar

51. Pauley KM, Chan EKL. MicroRNAs and their emerging roles in immunology. Ann N Y Acad Sci. 2008; 1143:226-39.10.1196/annals.1443.009Search in Google Scholar

52. Flynt AS, Lai EC. Biological principles of microRNAmediated regulation: shared themes amid diversity. Nat Rev Genet. 2008; 9:831-42.10.1038/nrg2455Open DOISearch in Google Scholar

53. Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proceedings of the National Academy of Sciences. 2007; 104:15805-10.10.1073/pnas.0707628104Search in Google Scholar

54. Zhao S, Wang Y, Liang Y, Zhao M, Long H, Ding S, et al. MicroRNA-126 regulates DNA methylation in CD4+ T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1. Arthritis Rheum. 2011; 63:1376-86.10.1002/art.30196Open DOISearch in Google Scholar

55. Gibbings DJ, Ciaudo C, Erhardt M, Voinnet O. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol. 2009; 11:1143-9.10.1038/ncb1929Open DOISearch in Google Scholar

56. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol. 2002; 12:735-9.10.1016/S0960-9822(02)00809-6Open DOISearch in Google Scholar

57. Williams AE, Moschos SA, Perry MM, Barnes PJ, Lindsay MA. Maternally imprinted microRNAs are differentially expressed during mouse and human lung development. Dev Dyn. 2007; 236:572-80.10.1002/dvdy.21047258215117191223Search in Google Scholar

58. Babak T, Zhang W, Morris Q, Blencowe BJ, Hughes TR. Probing microRNAs with microarrays: tissue specificity and functional inference. RNA. 2004; 10: 1813-9.10.1261/rna.7119904137066815496526Open DOISearch in Google Scholar

59. Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V. Expression profiling of mammalian microRNAs uncovers a subset of brain expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol. 2004; 5:R13.10.1186/gb-2004-5-3-r1339576315003116Search in Google Scholar

60. Polikepahad S, Knight JM, Naghavi AO, Oplt T, Creighton CJ, Shaw C, et al. Proinflammatory role for let-7 microRNAS in experimental asthma. J Biol Chem. 2010; 285:30139-49.10.1074/jbc.M110.145698294327220630862Search in Google Scholar

61. Wang Y, Weng T, Gou D, Chen Z, Chintagari N, Liu L. Identification of rat lung-specific microRNAs by microRNA microarray: valuable discoveries for the facilitation of lung research. BMC Genomics. 2007; 8:29.10.1186/1471-2164-8-29179090217250765Open DOISearch in Google Scholar

62. Lu TX, Munitz A, Rothenberg ME. MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol. 2009; 182: 4994-5002.10.4049/jimmunol.0803560428086219342679Search in Google Scholar

63. Xie C, Huang H, Sun X, Guo Y, Hamblin M, Ritchie RP, et al. MicroRNA-1 regulates smooth muscle cell differentiation by repressing Kruppel-like factor 4. Stem Cells Dev. 2010; 20:205-10.10.1089/scd.2010.0283312875420799856Search in Google Scholar

64. Liu G, Friggeri A, Yang Y, Milosevic J, Ding Q, Thannickal VJ, et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med. 2010; 207:1589-97.10.1084/jem.20100035291613920643828Search in Google Scholar

65. Garbacki N, Di Valentin E, Geurts P, Irrthum A, Crahay C, Arnould T, et al. MicroRNAs profiling in murine models of acute and chronic asthma: a relationship with mRNAs targets. PLoS ONE. 2011; 6:e16509.10.1371/journal.pone.0016509303060221305051Open DOISearch in Google Scholar

66. Goncharova EA, Lim PN, Chisolm A, Fogle HW, Taylor JH, Goncharov DA, et al. Interferons modulate mitogen-induced protein synthesis in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2010; 299:L25-35.10.1152/ajplung.00228.2009290409320382746Search in Google Scholar

67. Halayko AJ, Camoretti-Mercado B, Forsythe SM, Vieira JE, Mitchell RW, Wylam ME, et al. Divergent differentiation paths in airway smooth muscle culture: induction of functionally contractile myocytes. Am J Physiol Lung Cell Mol Physiol. 1999; 276:L197-206.10.1152/ajplung.1999.276.1.L1979887072Search in Google Scholar

68. Halayko AJ, Salari H, MA X, Stephens NL. Markers of airway smooth muscle cell phenotype. Am J Physiol Lung Cell Mol Physiol. 1996; 270:L1040-51.10.1152/ajplung.1996.270.6.L10408764231Search in Google Scholar

69. Benayoun L, Druilhe A, Dombret MC, Aubier M, M. P. Airway structural alterations selectively associated to severe asthma. Respir Res. 2003; 167: 1360-8.10.1164/rccm.200209-1030OC12531777Search in Google Scholar

70. Bowers CW, Dahm LM. Maintenance of contractility in dissociated smooth muscle: low-density cultures in a defined medium. Am J Physiol. 1993; 264:C229-36.10.1152/ajpcell.1993.264.1.C2298430771Search in Google Scholar

71. Ma X, Li W, Stephens NL. Detection of two clusters of mechanical properties of smooth muscle along the airway tree. J Appl Physiol. 1996; 80:857-61.10.1152/jappl.1996.80.3.857Search in Google Scholar

72. Ma X, Cheng Z, Kong H, Wang Y, Unruh H, Stephens NL, et al. Changes in biophysical and biochemical properties of single bronchial smooth muscle cells from asthmatic subjects. Am J Physiol Lung Cell Mol Physiol. 2002; 283:L1181.10.1152/ajplung.00389.2001Search in Google Scholar

73. Hirst S. Airway smooth muscle cell culture: application to studies of airway wall remodelling and phenotype plasticity in asthma. Eur Respir J. 1996; 9:808-20.10.1183/09031936.96.09040808Open DOISearch in Google Scholar

74. Halayko AJ, Stephens NL. Potential role for phenotypic modulation of bronchial smooth muscle cells in chronic asthma. Can J Physiol Pharmacol. 1994; 72: 1448-57.10.1139/y94-209Open DOISearch in Google Scholar

75. Halayko A, Tran T, Ji S, Yamasaki A, Gosens R. Airway smooth muscle phenotype and function: interactions with current asthma therapies. Curr Drug Targets. 2006; 7:525-40.10.2174/138945006776818728Open DOISearch in Google Scholar

76. Johnson SR, Knox AJ. Synthetic functions of airway smooth muscle in asthma. Trends Pharmacol Sci. 1997; 18:288-92.10.1016/S0165-6147(97)90644-1Open DOISearch in Google Scholar

77. Dekkers BGJ, Schaafsma D, Nelemans SA, Zaagsma J, Meurs H. Extracellular matrix proteins differentially regulate airway smooth muscle phenotype and function. Am J Physiol Lung Cell Mol Physiol. 2007; 292:L1405-L13.10.1152/ajplung.00331.200617293376Search in Google Scholar

78. Hirst SJ, Twort CHC, Lee TH. Differential effects of extracellular matrix proteins on human airway smooth muscle cell proliferation and phenotype. Am J Respir Cell Mol Biol. 2000; 23:335-44.10.1165/ajrcmb.23.3.399010970824Open DOISearch in Google Scholar

79. Mitchell RW, Halayko AJ, Kahraman S, Solway J, Wylam ME. Selective restoration of calcium coupling to muscarinic M3 receptors in contractile cultured airway myocytes. Am J Physiol Lung Cell Mol Physiol.2000; 278:L1091-100.10.1152/ajplung.2000.278.5.L109110781442Search in Google Scholar

80. Gosens R, Meurs H, Bromhaar MMG, McKay S, Nelemans SA, Zaagsma J. Functional characterization of serum and growth factor induced phenotypic changes in intact bovine tracheal smooth muscle. Br J Pharmacol. 2002; 137:459-66.10.1038/sj.bjp.0704889157351412359627Search in Google Scholar

81. Lé­guillette R, Laviolette M, Bergeron C, Zitouni N, Kogut P, Solway J, et al. Myosin, Transgelin, and Myosin Light Chain Kinase. Am J Respir Crit Care Med. 2009; 179:194-204.10.1164/rccm.200609-1367OCSearch in Google Scholar

82. Chiba Y, Ueno A, Shinozaki K, Takeyama H, Nakazawa S, Sakai H, et al. Involvement of RhoA-mediated Ca2+ sensitization in antigen-induced bronchial smooth muscle hyperresponsiveness in mice. Respir Res. 2005;6.10.1186/1465-9921-6-4Search in Google Scholar

83. Chiba Y, Takada Y, Miyamoto S, MitsuiSaito M, Karaki H, Misawa M. Augmented acetylcholine induced, Rho-mediated Ca2+ sensitization of bronchial smooth muscle contraction in antigen-induced airway hyperresponsive rats. Br J Pharmacol. 1999; 127: 597-600.10.1038/sj.bjp.0702585Open DOISearch in Google Scholar

84. Chang Y, Al-Alwan L, Risse PA, Roussel L, Rousseau S, Halayko AJ, et al. TH17 cytokines induce human airway smooth muscle cell migration. J Allergy Clin Immunol. 2011; 186:4156-63.10.1016/j.jaci.2010.12.1117Search in Google Scholar

85. Marthan R, Crevel H, Guenard H, Savineau JP. Responsiveness to histamine in human sensitized airway smooth muscle. Respir Physiol. 1992; 90: 239-50.10.1016/0034-5687(92)90084-AOpen DOISearch in Google Scholar

86. Labont­ I, Hassan M, Risse PA, Tsuchiya K, Laviolette M, Lauzon AM, et al. The effects of repeated allergen challenge on airway smooth muscle structural and molecular remodeling in a rat model of allergic asthma. Am J Physiol Lung Cell Mol Physiol. 2009; 297:L698-705.10.1152/ajplung.00142.2009Search in Google Scholar

87. Broide D, Lotz M, Cuomo A, Coburn D, Federman E, Wasserman S. Cytokines in symptomatic asthma airways. J Allergy Clin Immunol. 1992; 89:958-67.10.1016/0091-6749(92)90218-QOpen DOISearch in Google Scholar

88. Mattoli S, Mattoso VL, Soloperto M, Allegra L, Fasoli A. Cellular and biochemical characteristics of bronchoalveolar lavage fluid in symptomatic nonallergic asthma. J Allergy Clin Immunol. 1991; 87: 794-802.10.1016/0091-6749(91)90125-8Open DOISearch in Google Scholar

89. Kuhn AR, Schlauch K, Lao R, Halayko AJ, Gerthoffer WT, Singer CA. MicroRNA expression in human airway smooth muscle cells: role of miR-25 in regulation of airway smooth muscle phenotype. Am J Respir Cell Mol Biol. 2010; 42:506-13.10.1165/rcmb.2009-0123OC284874119541842Search in Google Scholar

90. Mohamed JS, Lopez MA, Boriek AM. Mechanical Stretch Up-regulates MicroRNA-26a and Induces Human Airway Smooth Muscle Hypertrophy by Suppressing Glycogen Synthase Kinase-3­ J Biol Chem. 2010; 285:29336-47.Search in Google Scholar

91. Mohamed JS, Hajira A, Li Z, Paulin D, Boriek AM. Early growth responsive protein-1 induces desmin null airway smooth muscle hypertrophy through MicroRNA-26a. J Biol Chem. 2011; 286:43394-404.10.1074/jbc.M111.235127323479821903578Search in Google Scholar

92. Leeper NJ, Raiesdana A, Kojima Y, Chun HJ, Azuma J, Maegdefessel L, et al. MicroRNA-26a is a novel regulator of vascular smooth muscle cell function. J Cell Physiol. 2011; 226:1035-43.10.1002/jcp.22422310857420857419Search in Google Scholar

93. Chiba Y, Tanabe M, Goto K, Sakai H, Misawa M. Down-regulation of miR-133a contributes to upregulation of Rhoa in bronchial smooth muscle cells. Am J Respir Crit Care Med. 2009; 180:713-9.10.1164/rccm.200903-0325OC19644046Open DOISearch in Google Scholar

94. van Rooij E, Marshall WS, Olson EN. Toward microRNA-based therapeutics for heart disease: the sense in antisense. Circ Res. 2008; 103:919-28.10.1161/CIRCRESAHA.108.183426272540718948630Open DOISearch in Google Scholar

95. Williams AE, Larner-Svensson H, Perry MM, Campbell GA, Herrick SE, Adcock IM, et al. MicroRNA expression profiling in mild asthmatic human airways and effect of corticosteroid therapy. PLoS ONE. 2009; 4:e5889.10.1371/journal.pone.0005889269040219521514Open DOISearch in Google Scholar

96. Moschos S, Williams A, Perry M, Birrell M, Belvisi M, Lindsay M. Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genomics. 2007; 8:240.10.1186/1471-2164-8-240194000817640343Open DOISearch in Google Scholar

97. Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, Garc­a JA, Paz-Ares J. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet. 2007; 39:1033-7.10.1038/ng207917643101Open DOISearch in Google Scholar

98. Kr­tzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005; 438:685-9.10.1038/nature0430316258535Search in Google Scholar

99. Simon HU, Seelbach H, Ehmann R, Schmitz M. Clinical and immunological effects of low-dose IFN-alpha treatment in patients with corticosteroid-resistant asthma. Allergy. 2003; 58:1250-5.10.1046/j.1398-9995.2003.00424.x14616099Open DOISearch in Google Scholar

100. Collison A, Mattes J, Plank M, Foster PS. Inhibition of house dust mite-induced allergic airways disease by antagonism of microRNA-145 is comparable to glucocorticoid treatment. J Allergy Clin Immunol. 2011; 128:160-7e4.10.1016/j.jaci.2011.04.00521571357Search in Google Scholar

eISSN:
1875-855X
Lingua:
Inglese
Frequenza di pubblicazione:
6 volte all'anno
Argomenti della rivista:
Medicine, Assistive Professions, Nursing, Basic Medical Science, other, Clinical Medicine