INFORMAZIONI SU QUESTO ARTICOLO

Cita

Cambridge Filter Japan, Ltd. (2009). Product information. Received May 16, 2009, from http://www.cambridgefilter.com/english/productsE/tcc-en/tcc-en.htmSearch in Google Scholar

Liu, Z.-S. (2008). Adsorption of SO2 and NO from incineration flue gas onto activated carbon fibers. Waste Manage., 28, 2329-2335. DOI:10.1016/j.wasman.2007.10.013.10.1016/j.wasman.2007.10.013Search in Google Scholar

Aroua, M.K., Daud, W.M.A.A., Yin, C.Y. & Adinata, D. (2008). Adsorption capacities of carbon dioxide, oxygen, nitrogen and methane on carbon molecular basket derived from polyethyleneimine impregnation on microporous palm shell activated carbon. Sep. Purif. Technol., 62, 609-613. DOI:10.1016/j.seppur.2008.03.003.10.1016/j.seppur.2008.03.003Search in Google Scholar

Houshmand, A., Wan Daud, W.M.A., & Shafeeyan, M. S. (2011). Exploring Potential Methods for Anchoring Amine Groups on the Surface of Activated Carbon for CO2 Adsorption. Sep. Purif. Technol., 46, 1098-1112. DOI:10.1080/01496395.2010.546383.10.1080/01496395.2010.546383Search in Google Scholar

Zhang, Z., Ma, X., Wang, D., Song C. & Wang, Y. (2011). Development of silica-gel-supported polyethylenimine sorbents for CO2 capture from flue gas. AIChE J., DOI:10.1002/aic.12771.10.1002/aic.12771Search in Google Scholar

Przepiórski, J., Yoshida, S. & Oya, A. (1999). Structure of K2CO3-loaded activated carbon fiber and its deodorization ability against H2S gas. Carbon, 37, 1881-1890. DOI:10,1016/S0008-6223(99)00088-3.10.1016/S0008-6223(99)00088-3Search in Google Scholar

Henning, K.D. & Schäfer, S. (1993). Impregnated activated carbon for environmental protection, Gas Sep. Purif., 7, 235-240. DOI:10.1016/0950-4214(93)80023-P.10.1016/0950-4214(93)80023-PSearch in Google Scholar

Hedin, N., Chen, L. & Laaksonen, A. (2010). Sorbents for CO2 capture from flue gas—aspects from materials and theoretical chemistry. Nanoscale, 2, 1819-1841. DOI:10.1039/c0nr00042f.10.1039/c0nr00042f20680200Search in Google Scholar

Wu, Z., Hao, N., Xiao, G., Liu, L., Webley, P. & Zhao, D. (2011). One-pot generation of mesoporous carbon supported nanocrystalline calcium oxides capable of efficient CO2 capture over a wide range of temperatures. Phys. Chem. Chem. Phys., 13, 2495-2503. DOI:10.1039/c0cp01807d.10.1039/C0CP01807D21132180Search in Google Scholar

Przepiórski, J. (2006). Activated carbon filters and their industrial applications in Activated Carbon Surfaces in Environmental Remediation (Interface Science and Technology, Volume 7, ed. T.J. Bandosz, chapter 9, ISBN:0-12-370536-3, pp.421-474). Academic Press.Search in Google Scholar

Przepiórski, J., Abe, Y., Yoshida, S. & Oya, A. (1997). Preferential supporting of potassium carbonate around the peripheral region of activated carbon fiber. J. Mater. Sci. Lett., 16, 1312-1314. DOI:10.1023/A:1018599513817.10.1023/A:1018599513817Search in Google Scholar

Yong, Z., Mata. V.G. & Rodrigues, A.E. (2001). Adsorption of carbon dioxide on chemically modified high surface area carbon-based adsorbents at high temperature. Adsorption, 7, 41-50. DOI:10.1023/A:1011220900415.10.1023/A:1011220900415Search in Google Scholar

Bhagiyalakshmi, M., Hemalatha, P., Ganesh, M., Peng, M.M. & Jang, H.T. (2011). A direct synthesis of mesoporous carbon supported MgO sorbent for CO2 capture. Fuel, 90, 1662-1667. DOI:10.1016/j.fuel.2010.10.050.10.1016/j.fuel.2010.10.050Search in Google Scholar

She, L., Li, J., Wan, Y., Yao, X., Tu, B. & Zhao, D. (2011). Synthesis of ordered mesoporous MgO/carbon composites by a one-pot assembly of amphiphilic triblock copolymers. J. Mater. Chem., 21, 795-800. DOI:10.1039/c0jm02226h.10.1039/C0JM02226HSearch in Google Scholar

Bhagiyalakshmi, M., Lee, J.Y. & Jang, H.T. (20011). Synthesis of mesoporous magnesium oxide: Its application to CO2 chemisorption. Int. J. Greenh. Gas Con., 4, 51-56. DOI:10.1016/j.ijggc.2009.08.001.10.1016/j.ijggc.2009.08.001Search in Google Scholar

Lee, S.J., Jung, S.Y., Lee, S.C., Jun, H.K., Ryu, C.K. & J.C. Kim. (2009). SO2 removal and regeneration of MgO-based sorbents promoted with titanium oxide. Ind. Eng. Chem. Res., 48, 2691-2696. DOI:10.1021/ie801081u.10.1021/ie801081uSearch in Google Scholar

Hassanzadeh, A. & Abbasian, J. (2010). Regenerable MgO-based sorbents for high-temperature CO2 removal from syngas: 1. Sorbent development, evaluation, and reaction modeling. Fuel, 89, 1287-1297. DOI:10.1016/j.fuel.2009.11.017.10.1016/j.fuel.2009.11.017Search in Google Scholar

Inagaki, M., Kobayashi, S., Koijn, F., Tanaka, N., Morishita, T. & Tryba, B. (2004). Pore structure of carbon coated on ceramic particles. Carbon, 42, 3153-3158. DOI:10.1016/j.carbon.2004.07.029.10.1016/j.carbon.2004.07.029Search in Google Scholar

Inagaki, M., Kato, M., Morishita, T. Morita, K. (2007). Direct preparation of mesoporous carbon from a coal tar pitch. Carbon, 45, 1121-1124. DOI:10.1016/S1095-6433(98)00008-7.10.1016/S1095-6433(98)00008-7Search in Google Scholar

Przepiórski, J., Karolczyk, J., Takeda, K., Tsumura, T., Toyoda, M. & Morawski, A. M. (2009). Porous carbon obtained by carbonization of PET Mixed with basic magnesium carbonate: Pore structure and pore creation mechanism. Ind. Eng. Chem. Res. 48, 7110-7116. DOI:10.1021/ie801694t.10.1021/ie801694tSearch in Google Scholar

Przepiórski, J., Karolczyk, J., Tsumura, T., Toyoda, M., Inagaki, M. & Morawski, A. W. (2011). Effect of some thermally unstable magnesium compounds on the yield of char formed from poly(ethylene terephthalate). J. Therm. Anal. Calorim. DOI:10.1007/s10973-011-1910-1.10.1007/s10973-011-1910-1Search in Google Scholar

eISSN:
1899-4741
ISSN:
1509-8117
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering