Accesso libero

Optimization of sol-gel technique for coating of metallic substrates by hydroxyapatite using the Taguchi method

INFORMAZIONI SU QUESTO ARTICOLO

Cita

In this study, the Taguchi method of design of experiment (DOE) was used to optimize the hydroxyapatite (HA) coatings on various metallic substrates deposited by sol-gel dip-coating technique. The experimental design consisted of five factors including substrate material (A), surface preparation of substrate (B), dipping/withdrawal speed (C), number of layers (D), and calcination temperature (E) with three levels of each factor. An orthogonal array of L18 type with mixed levels of the control factors was utilized. The image processing of the micrographs of the coatings was conducted to determine the percentage of coated area (PCA). Chemical and phase composition of HA coatings were studied by XRD, FT-IR, SEM, and EDS techniques. The analysis of variance (ANOVA) indicated that the PCA of HA coatings was significantly affected by the calcination temperature. The optimum conditions from signal-to-noise (S/N) ratio analysis were A: pure Ti, B: polishing and etching for 24 h, C: 50 cm min−1, D: 1, and E: 300 °C. In the confirmation experiment using the optimum conditions, the HA coating with high PCA of 98.5 % was obtained.

eISSN:
2083-124X
ISSN:
2083-1331
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties