Accesso libero

Stable carbon isotope analysis of subfossil wood from Austrian Alps

INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] Bale RJ, Robertson I, Salzer MW, Loader NJ, Leavitt SW, Gagen M, Harlan TP and McCarroll D, 2011. An annually resolved bristle-cone pine carbon isotope chronology for the last millennium. Quaternary Research 76(1): 22–29, DOI 10.1016/j.yqres.2011.05.004. http://dx.doi.org/10.1016/j.yqres.2011.05.00410.1016/j.yqres.2011.05.004Search in Google Scholar

[2] Becker B, Kromer B and Trimborn P, 1991. A stable-isotope tree-ring timescale of the Late Glacial/Holocene boundary. Nature 353: 647–649, DOI 10.1038/353647a0. http://dx.doi.org/10.1038/353647a010.1038/353647a0Search in Google Scholar

[3] Brand WA and Coplen TB, 2012. Stable isotope deltas: tiny, yet robust signatures in nature. Isotopes in Environmental and Health Studies 48(3): 393–409, DOI 10.1080/10256016.2012.666977. http://dx.doi.org/10.1080/10256016.2012.66697710.1080/10256016.2012.666977Search in Google Scholar

[4] Boettger T, Hiller A and Kremenetski K, 2003. Mid-Holocene warming in the northwest Kola Peninsula, Russia: northern pine limit movement and stable isotope evidence. The Holocene 13(3): 403–410, DOI 10.1191/0959683603hl633rp. http://dx.doi.org/10.1191/0959683603hl633rp10.1191/0959683603hl633rpSearch in Google Scholar

[5] Boettger T, Haupt M, Knöller K, Weise SM, Waterhouse JS, Rinne KT, Loader NJ, Sonninen E, Jungner H, Masson-Delmotte V, Stievenard M, Guillemin MT, Pierre M, Pazdur A, Leuenberger M, Filot M, Saurer M, Reynolds CE, Helle G and Schleser G, 2007. Wood cellulose preparation methods and mass spectrometric analyses of δ13C, δ18O and non exchangable δ2H values in cellu-lose, sugar, and starch: An interlaboratory comparison. Analytical Chemistry 79(12): 4603–4612, DOI 10.1021/ac0700023. http://dx.doi.org/10.1021/ac070002310.1021/ac0700023Search in Google Scholar

[6] Borella S, Leuenberger M, Saurer M and Siegwolf R, 1998. Reducing uncertainties in δ13C analysis of tree rings: Pooling, milling, and cellulose extraction. Journal of Geophysical Research 103: 19519–19526, DOI 10.1029/98JD01169. http://dx.doi.org/10.1029/98JD0116910.1029/98JD01169Search in Google Scholar

[7] Cullen LE and Macfarlane C, 2005. Comparison of cellulose extraction methods for analysis of stable isotope ratios of carbon and oxygen in plant material. Tree Physiology 25(5): 563–569, DOI 10.1093/treephys/25.5.563. http://dx.doi.org/10.1093/treephys/25.5.56310.1093/treephys/25.5.563Search in Google Scholar

[8] Edwards TWD, Graf W, Trimborn P, Stichler W, Lipp J and Payer HD, 2000. δ13C response surface resolves humidity and temperature signals in trees. Geochimica et Cosmochimica Acta 64(2): 161–167, DOI 10.1016/S0016-7037(99)00289-6. http://dx.doi.org/10.1016/S0016-7037(99)00289-610.1016/S0016-7037(99)00289-6Search in Google Scholar

[9] Epstein S, Krishnamurthy RV, Oeschger H, Eddy JA and Pecker JC, 1990. Environmental information in the isotopic record in trees. Philosophical Transactions of the Royal Society of London section A 330: 427–439, DOI 10.1098/rsta.1990.0023. http://dx.doi.org/10.1098/rsta.1990.002310.1098/rsta.1990.0023Search in Google Scholar

[10] Eriksson KEL, Blanchette RA and Ander P, 1990. Microbial and Enzy-matic Degradation of Wood and Wood Components. Berlin, Springer Verlag: 407pp. http://dx.doi.org/10.1007/978-3-642-46687-810.1007/978-3-642-46687-8Search in Google Scholar

[11] Fengel D, 1991. Ageing and fossilization of wood and its components. Wood Science and Technology 25(3): 153–177, DOI 10.1007/BF00223468. http://dx.doi.org/10.1007/BF0022346810.1007/BF00223468Search in Google Scholar

[12] Friedrich M, Kromer B, Spurk M, Hofmann J and Kaiser KF, 1999. Paleo-environment and radiocarbon calibration as derived from Lateglacial/Early Holocene tree-ring chronologies. Quaternary International 61(1): 27–39, DOI 10.1016/S1040-6182(99)00015-4. http://dx.doi.org/10.1016/S1040-6182(99)00015-410.1016/S1040-6182(99)00015-4Search in Google Scholar

[13] Grabner M, Wimmer R, Gierlinger N, Evans R and Downes G, 2005. Heartwood extractives in larch and effects on X-ray densitometry. Canadian Journal of Forest Research 35(12): 2781–2786, DOI 10.1139/x05-196. http://dx.doi.org/10.1139/x05-19610.1139/x05-196Search in Google Scholar

[14] Green JW, 1963. Wood cellulose. In: Whistler RL, ed., Methods of Carbohydrate Chemistry. Academic Press, New York: 9–21. Search in Google Scholar

[15] Grabner M, Klein A, Geihofer D, Reschreiter H, Barth FE, Sormaz T and Wimmer R, 2006. Bronze age dating of timber from the salt-mine at Hallstatt, Austria. Dendrochronologia 24(2–3): 61–68, DOI 10.1016/j.dendro.2006.10.008. 10.1016/j.dendro.2006.10.008Search in Google Scholar

[16] Harlow BA, Marshall JD and Robinson AP, 2006. A multi-species comparison of δ13C from whole wood, extractive-free wood and holocellulose. Tree Physiology 26(6): 767–774, DOI 10.1093/treephys/26.6.767. http://dx.doi.org/10.1093/treephys/26.6.76710.1093/treephys/26.6.76716510392Search in Google Scholar

[17] Helle G and Schleser GH, 2004a. Interpreting climate proxies from tree-rings. In: Fischer H, Floeser G, Kumke T, Lohmann G, Miller H, Negendank JFW and von Storch H, eds., The KIHZ project: To-wards a synthesis of Holocene proxy data and climate models. Springer Verlag, Berlin: 129–148. 10.1007/978-3-662-10313-5_8Search in Google Scholar

[18] Helle G and Schleser GH, 2004b. Beyond CO2-fixation by Rubisco- an interpretation of 13C/12C variations in tree rings from novel intra-seasonal studies on broad-leaf trees. Plant Cell and Environment 27(3): 367–380, DOI 10.1111/j.0016-8025.2003.01159.x. http://dx.doi.org/10.1111/j.0016-8025.2003.01159.x10.1111/j.0016-8025.2003.01159.xSearch in Google Scholar

[19] Jäggi M, Saurer M, Fuhrer J and Siegwolf R, 2002. The relationships between the stable carbon isotope composition of needle bulk material, starch, and tree rings in Picea abies. Oecologia 131(3): 325–332, DOI 10.1007/s00442-002-0881-0. http://dx.doi.org/10.1007/s00442-002-0881-010.1007/s00442-002-0881-028547703Search in Google Scholar

[20] Kim YS, 1990. Chemical characteristics of waterlogged archaeological wood. Holzforschung 44(3): 169–172, DOI 10.1515/hfsg.1990.44.3.169. http://dx.doi.org/10.1515/hfsg.1990.44.3.16910.1515/hfsg.1990.44.3.169Search in Google Scholar

[21] Kim YS and Singh A, 2000. Micromorphological characteristic of wood biodegradation in wet environments: a review. IAWA Journal 21(2): 135–155, DOI 10.1163/22941932-90000241. http://dx.doi.org/10.1163/22941932-9000024110.1163/22941932-90000241Search in Google Scholar

[22] Kress A, Young GHF, Saurer M, Loader NJ, Siegwolf RTW and McCarroll D, 2009. Stable isotope coherence in the earlywood and latewood of tree-line conifers. Chemical Geology 268(1–2): 52–57, DOI 10.1016/j.chemgeo.2009.07.008. http://dx.doi.org/10.1016/j.chemgeo.2009.07.00810.1016/j.chemgeo.2009.07.008Search in Google Scholar

[23] Leavitt SW and Long A, 1982. Stable carbon isotopes as a potential supplemental tool in dendrochronology. Tree-Ring Bulletin 42: 49–55. Search in Google Scholar

[24] Lipp J, Trimborn P, Fritz P, Moser H, Becker B and Frenzel B, 1991. Stables isotopes in tree-ring cellulose and climatic change. Tellus B 43(3): 322–330, DOI 10.1034/j.1600-0889.1991.t01-2-00005.x. http://dx.doi.org/10.1034/j.1600-0889.1991.t01-2-00005.x10.1034/j.1600-0889.1991.t01-2-00005.xSearch in Google Scholar

[25] Loader NJ, Robertson I, Barker AC, Switsur VR and Waterhouse JS, 1997. An improved technique for the bath processing of small wholewood samples to α-cellulose. Chemical Geology 136(3–4): 313–317, DOI 10.1016/S0009-2541(96)00133-7. http://dx.doi.org/10.1016/S0009-2541(96)00133-710.1016/S0009-2541(96)00133-7Search in Google Scholar

[26] Loader NJ, Robertson I and McCarroll D, 2003. Comparison of stable carbon isotope ratios in the whole wood, cellulose and lignin of oak tree-rings. Palaeogeography, Palaeoclimatology, Palaeoecol-ogy 196(3–4): 395–407, DOI 10.1016/S0031-0182(03)00466-8. http://dx.doi.org/10.1016/S0031-0182(03)00466-810.1016/S0031-0182(03)00466-8Search in Google Scholar

[27] Mayr C, Frenzel B, Friedrich M, Spurk M, Stichler W and Trimborn P, 2003. Stable carbon- and hydrogen-isotope ratios of subfossil oaks in southern Germany: methodology and application to a composite record for the Holocene. The Holocene 13(3): 393–402, DOI 10.1191/0959683603hl632rp. http://dx.doi.org/10.1191/0959683603hl632rp10.1191/0959683603hl632rpSearch in Google Scholar

[28] McCarroll D and Loader NJ, 2004. Stable isotopes in tree rings. Qua-ternary Science Reviews 23(7–8): 771–801, DOI 10.1016/j.quascirev.2003.06.017. http://dx.doi.org/10.1016/j.quascirev.2003.06.01710.1016/j.quascirev.2003.06.017Search in Google Scholar

[29] McCormac FG, Baillie MGL, Pilcher JR, Brown DM and Hoper ST, 1994. δ13C measurements from the Irish oak chronology. Radiocarbon 36: 27–35. 10.1017/S0033822200014296Search in Google Scholar

[30] Pan DR, Tai DS and Chen CL, 1990. Comparative studies on chemical composition of wood components in recent and ancient woods of Bischofia polycarpa. Holzforschung 44(1): 7–16, DOI 10.1515/hfsg.1990.44.1.7. http://dx.doi.org/10.1515/hfsg.1990.44.1.710.1515/hfsg.1990.44.1.7Search in Google Scholar

[31] Passialis CN, 1997. Physico-chemical characteristic of waterlogged archeological wood. Holzforschung 51(2): 111–113, DOI 10.1515/hfsg.1997.51.2.111. http://dx.doi.org/10.1515/hfsg.1997.51.2.11110.1515/hfsg.1997.51.2.111Search in Google Scholar

[32] Pawełczyk S and Pazdur A, 2004. Carbon isotopic composition of tree rings as a tool for biomonitoring CO2 level. Radiocarbon 46(2): 701–719. 10.1017/S003382220003575XSearch in Google Scholar

[33] Pawełczyk S, Pazdur A and Hałas S, 2004. Stable carbon isotopic composition of tree rings from a pine tree from Augustów Wilder-ness, Poland, as a temperature and local environment conditions indicator. Isotopes Environmental and Health Studies 40(2): 145–154, DOI 10.1080/10256010410001671032. http://dx.doi.org/10.1080/1025601041000167103210.1080/10256010410001671032Search in Google Scholar

[34] Rinne KT, Boettger T, Loader NJ, Robertson I, Switsur VR and Waterhouse JS, 2005. On the purification of α-cellulose from resinous wood for stable isotope (H,C and O) analysis. Chemical Geology 222(1–2): 75–82, DOI 10.1016/j.chemgeo.2005.06.010. http://dx.doi.org/10.1016/j.chemgeo.2005.06.01010.1016/j.chemgeo.2005.06.010Search in Google Scholar

[35] Sass-Klaassen U, Poole I, Wils T, Helle G, Schleser GH and van Bergen PF, 2005. Carbon and oxygen isotope dendrochronology in sub-fossil bog oak tree rings — a preliminary study. IAWA Journal 26: 121–136. http://dx.doi.org/10.1163/22941932-9000160710.1163/22941932-90001607Search in Google Scholar

[36] Savard MM, Bégin C, Marion J, Arseneault D and Bégin Y, 2012. Evaluating the integrity of C and O isotopes in sub-fossil wood from boreal lakes. Palaeogeography, Palaeoclimatology, Palaeoecology 348–349: 21–31, DOI 10.1016/j.palaeo.2012.06.003. http://dx.doi.org/10.1016/j.palaeo.2012.06.00310.1016/j.palaeo.2012.06.003Search in Google Scholar

[37] Schleser GH, Frilingsdorf J and Blair A, 1999. Carbon isotope behaviour in wood and cellulose during artificial aging. Chemical Geology 158(1–2): 121–130, DOI 10.1016/S0009-2541(99)00024-8. http://dx.doi.org/10.1016/S0009-2541(99)00024-810.1016/S0009-2541(99)00024-8Search in Google Scholar

[38] Schweingruber FH, Fritts HC, Bräker OU, Drew LG and Schär E, 1978. The X-ray technique as applied to dendrochronology. Treering Bulletin 38: 61–91. Search in Google Scholar

[39] Sensuła B, Pazdur A and Marais MF, 2011. First application of mass spectrometry and gas chromatography in investigation of a-cellulose hydrolysates: the influence of climate changes on glucose molecules in pine tree-rings. Rapid Communications in Mass Spectrometry 25(4): 489–494, DOI 10.1002/rcm.4882. http://dx.doi.org/10.1002/rcm.488210.1002/rcm.4882Search in Google Scholar

[40] Sheppard PR and Thompson TL, 2000. Effect of extraction pre-treatment on radial variation of nitrogen concentration in tree rings. Journal of Environmental Quality 29(6): 2037–2042, DOI 10.2134/jeq2000.00472425002900060042x. http://dx.doi.org/10.2134/jeq2000.00472425002900060042x10.2134/jeq2000.00472425002900060042xSearch in Google Scholar

[41] Treydte KS, Frank DC, Suarer M, Helle G, Schleser G and Esper J, 2009. Impact of climate and CO2 on a millennium-long tree-ring carbon isotope record. Geochimica et Cosmochimica Acta 73(16): 4635–4647, DOI 10.1016/j.gca.2009.05.057. http://dx.doi.org/10.1016/j.gca.2009.05.05710.1016/j.gca.2009.05.057Search in Google Scholar

[42] van Bergen PF and Poole I, 2002. Stable carbon isotopes of wood: a clue to palaeoclimate? Palaeogeography, Palaeoclimatology, Palaeoecology 182(1–2): 31–45, DOI 10.1016/S0031-0182(01)00451-5. http://dx.doi.org/10.1016/S0031-0182(01)00451-510.1016/S0031-0182(01)00451-5Search in Google Scholar

[43] Young GHF, McCarroll D, Loader NJ, Gagen MH, Kirchhefer AJ and Demmler JC, 2012. Changes in atmospheric circulation and the Arctic Oscillation preserved within a millennial length reconstruction of summer cloud cover from northern Fennoscandia. Climate Dynamics 39(1–2): 495–507, DOI 10.1007/s00382-011-1246-3. http://dx.doi.org/10.1007/s00382-011-1246-310.1007/s00382-011-1246-3Search in Google Scholar

eISSN:
1897-1695
Lingua:
Inglese
Frequenza di pubblicazione:
Volume Open
Argomenti della rivista:
Geosciences, other