INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] de Rooij M, Hamoen EH, Fütterer JJ, et al., Accuracy of multiparametric MRI for prostate cancer detection: a meta-analysis. American Journal of Roentgenology. 2014;202(2):343-351.10.2214/AJR.13.1104624450675Search in Google Scholar

[2] Shahbazi-Gahrouei D. Novel MR imaging contrast agents for cancer detection. Journal of Research in Medical Sciences. 2009;14(3):141-147.Search in Google Scholar

[3] Shahbazi-Gahrouei D, Rizvi S, Williams M, Allen BJ. In vitro studies of gadolinium-DTPA conjugated with monoclonal antibodies as cancer-specific magnetic resonance imaging contrast agents. Australasian Physics & Engineering Sciences in Medicine. 2002;25(1):31-38.10.1007/BF0317837212049473Search in Google Scholar

[4] Padmanabhan P, Kumar A, Kumar S, et al. Nanoparticles in practice for molecular-imaging applications: An overview. Acta Biomaterialia. 2016;41:1-16.10.1016/j.actbio.2016.06.00327265153Search in Google Scholar

[5] Shahbazi-Gahrouei D, Williams M, Rizvi S, Allen BJ. In vivo studies of Gd-DTPA-monoclonal antibody and gd-porphyrins: Potential magnetic resonance imaging contrast agents for melanoma. Journal of Magnetic Resonance Imaging. 2001;14(2):169-174.10.1002/jmri.116811477676Search in Google Scholar

[6] Abdolahi M, Shahbazi-Gahrouei D, Laurent S, et al. Synthesis and in vitro evaluation of MR molecular imaging probes using J591 mAb-conjugated SPIONs for specific detection of prostate cancer. Contrast Media and Molecular Imaging, 2013;8(2):175-184.10.1002/cmmi.151423281290Search in Google Scholar

[7] Mirzaei M, Mohagheghi M, Shahbazi-Gahrouei D, Khatami A. Novel nanosized Gd3+-ALGD-G2-C595: in vivo dual selective MUC-1 positive tumor molecular MR imaging and therapeutic agent. J Nanomed Nanotechnol. 2012;3(7):147-152.10.4172/2157-7439.1000147Search in Google Scholar

[8] Shahbazi-Gahrouei D, Williams M, Allen B. In vitro study of relationship between signal intensity and gadolinium-DTPA concentration at high magnetic field strength. Australasian Radiology. 2001;45(3):298-304.10.1046/j.1440-1673.2001.00924.x11531752Search in Google Scholar

[9] Shahbazi-Gahrouei D, Abdolahi M. A novel method for quantitative analysis of anti-MUC1 expressing ovarian cancer cell surface based on magnetic cell separation. Journal of Medical Sciences. 2012;12(8):256-266.10.3923/jms.2012.256.266Search in Google Scholar

[10] Shahbazi-Gahrouei D, Abdolahi M. Superparamagnetic iron oxide-C595: Potential MR imaging contrast agents for ovarian cancer detection. Journal of Medical Physics. 2013;38(4):198-204.10.4103/0971-6203.121198395900024672155Search in Google Scholar

[11] Shahbazi-Gahrouei D, Abdolahi M. Detection of MUC1-expressing ovarian cancer by C595 monoclonal antibody-conjugated SPIONs using MR imaging. The Scientific World Journal. 2013;2013:609151.10.1155/2013/609151380649024194685Search in Google Scholar

[12] Ghasemian Z, Shahbazi-Gahrouei D, Manouchehri S. Cobalt zinc ferrite nanoparticles as a potential magnetic resonance imaging agent: An in vitro study. Avicenna Journal of Medical Biotechnology. 2015;7(2):64-68.Search in Google Scholar

[13] Zahraei M, Marciello M, Lazaro-Carrillo A, et al. Versatile theranostics agents designed by coating ferrite nanoparticles with biocompatible polymers. Nanotechnology. 2016;27(25):255702.10.1088/0957-4484/27/25/25570227184442Search in Google Scholar

[14] Zahraei M, Monshi A, del Puerto Morales M, et al. Hydrothermal synthesis of fine stabilized superparamagnetic nanoparticles of Zn2+ substituted manganese ferrite. Journal of Magnetism and Magnetic Materials. 2015;393:429-436.10.1016/j.jmmm.2015.06.006Search in Google Scholar

[15] Hattrup L, Gendler J. MUC1 alters oncogenic events and transcription in human breast cancer cells. Breast Cancer Research. 2006;8(4):R37.10.1186/bcr1515177946016846534Search in Google Scholar

[16] Wang L, Ma J, Liu F, et al. Expression of MUC1 in primary and metastatic human epithelial ovarian cancer and its therapeutic significance. Gynecologic Oncology. 2007;105(3):695-702.10.1016/j.ygyno.2007.02.00417368732Search in Google Scholar

[17] Boult K, Borri M, Jury A, et al. Investigating intracranial tumour growth patterns with multiparametric MRI incorporating Gd-DTPA and USPIO-enhanced imaging. NMR in Biomedicine. 2016;29(11):1608-1617.10.1002/nbm.3594508256127671990Search in Google Scholar

[18] Danhier P, Magat J, Levêque P, et al. In vivo visualization and ex vivo quantification of murine breast cancer cells in the mouse brain using MRI cell tracking and electron paramagnetic resonance. NMR in Biomedicine. 2015;28(3):367-375.10.1002/nbm.325925611487Search in Google Scholar

[19] Estelrich J, Sánchez-Martín J, Busquets A. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. International Journal of Nanomedicine. 2015;10:1727-1741.10.2147/IJN.S76501Search in Google Scholar

[20] Seyfer P, Pagenstcher A, Mandic R, et al. Cancer and inflammation: Differentiation by USPIO-enhanced MR imaging. Journal of Magnetic Resonance Imaging. 2014;39(3):665-672.10.1002/jmri.2420023723131Search in Google Scholar

[21] Neuwelt A, Sidhu N, Hu C, et al. Iron-based superparamagnetic nanoparticle contrast agents for MRI of infection and inflammation. American Journal of Roentgenology. 2015;204(3):W302-W313.10.2214/AJR.14.12733439503225714316Search in Google Scholar

[22] Kandasamy G, Maity D. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. International Journal of Pharmaceutics. 2015;496(2):191-218.10.1016/j.ijpharm.2015.10.05826520409Search in Google Scholar

[23] Vidavsky N, Kunitake A, Chiou E, et al. Studying biomineralization pathways in a 3D culture model of breast cancer microcalcifications. Biomaterials. 2018;179:71-84.10.1016/j.biomaterials.2018.06.030674770429980076Search in Google Scholar

[24] Talari S, Raza A, Rehman S, Rehman IU. Analyzing normal proliferating, hypoxic and necrotic regions of T-47D human breast cancer spheroids using Raman spectroscopy. Applied Spectroscopy Reviews. 2017;52(10):909-924.10.1080/05704928.2017.1363053Search in Google Scholar

[25] Khaniabadi M, Majik AMSA; Asif M, et al. Breast cancer cell targeted MR molecular imaging probe: Anti-MUC1 antibody-based magnetic nanoparticles. Journal of Physics: Conference Series. 2017;851:012014.10.1088/1742-6596/851/1/012014Search in Google Scholar

[26] Khaniabadi M, Shahbazi-Gahrouei D, Suhaimi M, et al. In vitro study of SPIONs-C595 as molecular imaging probe for specific breast cancer (MCF-7) cells detection. Iranian Biomedical Journal. 2017;21(6):360-368.Search in Google Scholar

[27] Khaniabadi M, Shahbazi-Gahrouei D, Jafaar S, et al. Magnetic iron oxide nanoparticles as T2 MR imaging contrast agent for detection of breast cancer (MCF-7) cell. Avicenna Journal of Medical Biotechnology. 2017;9(4):181-188.Search in Google Scholar

[28] Jafari F, Khadeer B, Iqbal A, et al. Increased aqueous solubility and proapoptotic activity of potassium koetjapate against human colorectal cancer cells. Journal of Pharmacy and Pharmacology. 2014;66(10):1394-1409.10.1111/jphp.1227225039905Search in Google Scholar

[29] Funovics A, Kapeller B, Hoeller C, et al. MR imaging of the her2/neu and 9.2. 27 tumor antigens using immunospecific contrast agents. Magnetic Resonance Imaging. 2004;22(6):843-850.10.1016/j.mri.2004.01.05015234453Search in Google Scholar

[30] Oghabian M, Jeddi-Tehrani M, Zolfaghari A, et al. Detectability of Her2 positive tumors using monoclonal antibody conjugated iron oxide nanoparticles in MRI. Journal of Nanoscience and Nanotechnology. 2011;11(6):5340-5344.10.1166/jnn.2011.377521770186Search in Google Scholar

[31] Arancibia S, Barrientos A, Torrejón J, et al. Copper oxide nanoparticles recruit macrophages and modulate nitric oxide, proinflammatory cytokines and PGE2 production through arginase activation. Nanomedicine. 2016;11(10):1237-1251.10.2217/nnm.16.3927079258Search in Google Scholar

[32] Zhang J, Ring L, Hurley R, et al. Quantification and biodistribution of iron oxide nanoparticles in the primary clearance organs of mice using T1 contrast for heating. Magnetic Resonance in Medicine. 2017;78(2):702-712.10.1002/mrm.26394536608927667655Search in Google Scholar

[33] Rodríguez E, Simoes V, Roig A, et al. An iron-based T 1 contrast agent made of iron-phosphate complexes: In vitro and in vivo studies. Magnetic Resonance Materials in Physics, Biology and Medicine. 2007;20(1):27-37.10.1007/s10334-006-0066-717268782Search in Google Scholar

[34] Callaghan F, Mohammadi S, Weiskopf N. Synthetic quantitative MRI through relaxometry modelling. NMR in Biomedicine. 2016;29(12):1729-1738.10.1002/nbm.3658513208627753154Search in Google Scholar

eISSN:
1898-0309
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics