Accesso libero

Experiment and prediction of water content of sour natural gas with an modified cubic plus association equation of state

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. And, A.H.M. & Richon, D. (2008). Semiempirical method for determining water content of methane-rich hydrocarbon gas in equilibrium with gas hydrates. Ind. & Enginee. Chem. Res. 47(2), 451–458. DOI: 10.1021/ie070372h.10.1021/ie070372hOpen DOISearch in Google Scholar

2. Lin, Z., Li, L., Zhu, J., Li, Q. & Fan, J. (2015). Analytical methods to calculate water content in natural gas. Chem.Enginee. Res. & Design, 93, 148–162. DOI: 10.1016/j.cherd.2014.05.021.10.1016/j.cherd.2014.05.021Open DOISearch in Google Scholar

3. GPSA. (1998). Engineering Data Book. eleventh ed. Tulsa: Gas Processors Association.Search in Google Scholar

4. Zirrahi, M., Azin, R., Hassanzadeh, H. & Moshfeghian, M. (2010). Prediction of water content of sour and acid gases. Fluid Phase Equilibria, 299(2), 171–179. DOI: 10.1016/j.fluid.2010.10.012.10.1016/j.fluid.2010.10.012Open DOISearch in Google Scholar

5. Ziabakhsh-Ganji, Z. & Kooi, H. (2012). An equation of state for thermodynamic equilibrium of gas mixtures and brines to allow simulation of the effects of impurities in subsurface co 2, storage. International J. Greenhouse Gas Control, 11(11), 21–34. DOI: 10.1016/j.ijggc.2012.07.025.10.1016/j.ijggc.2012.07.025Open DOISearch in Google Scholar

6. Kontogeorgis, G.M., Voutsas, E.C., And, I.V.Y. & Tassios, D.P. (1996). An equation of state for associating fluids. Ind. & Enginee. Chem. Res. 35(11), 4310–4318. DOI: 10.1021/ie9600203.10.1021/ie9600203Open DOISearch in Google Scholar

7. Austegard, A., Solbraa, E., Koeijer, G.D. & Mølnvik, M.J. (2006). Thermodynamic models for calculating mutual solubilities in h2o–co2 –ch4, mixtures. Chem. Enginee. Res. & Design, 84(9), 781–794. DOI: 10.1205/cherd05023.10.1205/cherd05023Open DOISearch in Google Scholar

8. Oliveira, M.B., Coutinho, J.A.P., & Queimada, A.J. (2007). Mutual solubilities of hydrocarbons and water with the cpa eos. Fluid Phase Equilibria, 258(1), 58–66. DOI: 10.1016/j.fluid.2007.05.023.10.1016/j.fluid.2007.05.023Search in Google Scholar

9. Adisasmito, S., Iii, R.J.F. & Jr, E.D.S. (1991). Hydrates of carbon dioxide and methane mixtures. J. Chem. & Enginee. Data, 36(1), 68–71. DOI: 10.1021/je00001a020.10.1021/je00001a020Open DOISearch in Google Scholar

10. Dharmawardhana, P.B., Parrish, W.R., & Sloan, E.D. (1980). Experimental thermodynamic parameters for the prediction of natural gas hydrate dissociation conditions. Le Mans, 19(4), 410–414. DOI: 10.1021/i160076a015.10.1021/i160076a015Search in Google Scholar

11. Mekala, P. & Sangwai, J.S. (2014). Prediction of phase equilibrium of clathrate hydrates of multicomponent natural gases containing co 2, and h 2 s. J. Petrol. Sci. & Enginee. 116(2), 81–89. DOI: 10.1016/j.petrol.2014.02.018.10.1016/j.petrol.2014.02.018Open DOISearch in Google Scholar

12. Li, Z., & Firoozabadi, A. (2009). Cubic-plus-association equation of state for water-containing mixtures: is “cross association” necessary?. Aiche Journal, 55(7), 1803–1813. DOI: 10.1002/aic.11784.10.1002/aic.11784Open DOISearch in Google Scholar

13. Herslund, P. J., Thomsen, K., Abildskov, J. & Solms, N.V. (2012). Phase equilibrium modeling of gas hydrate systems for co 2, capture. J. Chem. Thermodyn. 48(5), 13–27. DOI: 10.1016/j.jct.2011.12.039.10.1016/j.jct.2011.12.039Open DOISearch in Google Scholar

14. Li, L., Zhu, L., & Fan, J. (2016). The application of cpa-vdwp to the phase equilibrium modeling of methane-rich sour natural gas hydrates. Fluid Phase Equilibria, 409, 291–300. DOI: 10.1016/j.fluid.2015.10.017.10.1016/j.fluid.2015.10.017Open DOISearch in Google Scholar

15. DIPPR (2011). Design Institute for Physical Properties, Diadem 801.Search in Google Scholar

16. Ruffine, L., P. Mougin, A. & Barreau, A. (2006). How to represent hydrogen sulfide within the cpa equation of state. Ind. Eng. Chem. Res. 45(22), 7688–7699. DOI: 10.1021/ie0603417.10.1021/ie0603417Open DOISearch in Google Scholar

17. Ruffine, L. & Trusler, J.P.M. (2010). Phase behaviour of mixed-gas hydrate systems containing carbon dioxide. J. Chem. Thermodyn. 42(5), 605–611. DOI: 10.1016/j.jct.2009.11.019.10.1016/j.jct.2009.11.019Open DOISearch in Google Scholar

18. Song, K.Y., & Kobayashi, R. (1987). Water content of CO2 in equilibrium with liquid water and/or hydrates. Spe Formation Evaluation, 2(4), 500–508. DOI: 10.2118/15905-PA.10.2118/15905-Open DOISearch in Google Scholar

19. Seo, M.D., Kang, J.W., & Lee, C.S. (2011). Water solubility measurements of the co2-rich liquid phase in equilibrium with gas hydrates using an indirect method. J. Chem. & Enginee. Data, 56(5), 2626–2629. DOI: 10.1021/je2001232.10.1021/je2001232Open DOISearch in Google Scholar

20. Chapoy, A., Mohammadi, A.H., Chareton, A., Tohidi, B. & Richon, D. (2004). Measurement and modeling of gas solubility and literature review of the properties for the carbon dioxide−water system. Ind. & Enginee. Chem. Res. 43(7), págs. 1794–1802. DOI: 10.1021/ie034232t.10.1021/ie034232tOpen DOISearch in Google Scholar

21. Shigeru Bando, Fumio Takemura, Masahiro Nishio, Eiji Hihara, A. & Akai, M. (2003). Solubility of co2 in aqueous solutions of nacl at (30 to 60)°C and (10 to 20) mpa. J. Chem. & Enginee. Data, 48(3). DOI: 10.1021/je0255832.10.1021/je0255832Open DOISearch in Google Scholar

22.Winkler, L.W..(1906). Regularity in the absorption of gases by liquids Physical Chemical.Search in Google Scholar

23. Wright, R.H. & Maass, O. (1932). The electrical conductivity of aqueous solutions of hydrogen sulphide. Canadian J. Res. 6(6), 588-595. DOI: 10.1139/cjr32-047.10.1139/cjr32-047Open DOISearch in Google Scholar

24.Wright, R.H. & Maass, O. (1932). The solubility of hydrogen sulphide in water from the vapor pressures. Canadian J. Res. 6(1), 94-101. DOI: 10.1139/cjr32-006.10.1139/cjr32-006Open DOISearch in Google Scholar

25. Selleck, F.T., Carmichael, L.T. & Sage, B.H. (1952). Phase behavior in the hydrogen sulfide-water system. Industrial & Engineering Chemistry, 44(9), 2219–2226. DOI: 10.1021/ie50513a064.10.1021/ie50513a064Open DOISearch in Google Scholar

26. Reamer, H.H., Sage, B.H., & Lacey, W.N. (1951). Phase equilibria in hydrocarbon systems – volumetric and phase behavior of the methane-hydrogen sulfide system. Ind. & Enginee. Chem. 43(4). DOI: 10.1021/ie50496a052.10.1021/ie50496a052Open DOISearch in Google Scholar

27. Coquelet, C., Valtz, A., Stringari, P., Popovic, M., Richon, D., Mougin, P. (2014). Phase equilibrium data for the hydrogen sulphide + methane system at temperatures from 186 to 313 K and pressures up to about 14 MPa, 383:94-9. DOI: 10.1016/j.fluid.2014.09.025.10.1016/j.fluid.2014.09.025Open DOISearch in Google Scholar

28. Wei, M.S.W., Brown, T.S., Kidnay, A.J. & Sloan, E.D. (1995). Vapor + liquid equilibria for the ternary system methane + ethane + carbon dioxide at 230 k and its constituent binaries at temperatures from 207 to 270 k. J. Chem. & Enginee. Data, 40(4), 726–731. DOI: 10.1021/je00020a002.10.1021/je00020a002Open DOISearch in Google Scholar

29. Webster, L.A. & Kidnay, A.J. (2001). Vapor−liquid equilibria for the methane−propane−carbon dioxide systems at 230 k and 270 k. J. Chem. Eng. Data, 46(3), 759–764. DOI: 10.1021/je000307d.10.1021/je000307dOpen DOISearch in Google Scholar

30. Donnelly, H.G. & Katz, D.L. (1954). Phase equilibria in the carbon dioxide–methane system. Ind. & Enginee. Chem. 46(3), 511–517. DOI: 10.1021/ie50531a036.10.1021/ie50531a036Open DOISearch in Google Scholar

31. Bierlein, J.A. & Kay, W.B. (1953). Phase-equilibrium properties of system carbon dioxide-hydrogen sulfide. Ind. & Enginee. Chem. 45(3), 618–624. DOI: 10.1021/ie50519a043.10.1021/ie50519a043Open DOISearch in Google Scholar

32. Chapoy, A., Coquelet, C., Liu, H., Valtz, A. & Tohidi, B. (2013). Vapour–liquid equilibrium data for the hydrogen sulphide (h 2 s) + carbon dioxide (co 2) system at temperatures from 258 to 313 k. Fluid Phase Equilibria, 356(1–2), 223-228. DOI: 10.1016/j.fluid.2013.07.050.10.1016/j.fluid.2013.07.050Open DOISearch in Google Scholar

33. Sobocinski, D.P. & Kurata, F. (1959). Heterogeneous phase equilibria of the hydrogen sulfide–carbon dioxide system. Aiche J., 5(4), 545–551. DOI: 10.1002/aic.690040217.10.1002/aic.690040217Open DOISearch in Google Scholar

34. Aoyagi, K., Song, K.Y., Kobayashi, R., Sloan, E.D., Dharmawardhana, P.B. (1980) (I). The Water Content and Correlation of the Water Content of Methane in Equilibrium with Hydrates, and (II). The Water Content of a High Carbon Dioxide Simulated Prudhoe Bay Gas in Equilibrium with Hydrates. Tulsa: GPA.Search in Google Scholar

35. Antonin Chapoy, A.H.M., Bahman Tohidi, A. & Richon, D. (2004). A semiempirical approach for estimating the water content of natural gases. Ind. & Enginee. Chem. Res. 43(22), 7137–7147. DOI: 10.1021/ie049867m.10.1021/ie049867mOpen DOISearch in Google Scholar

36. Michelsen, M.L. JMM (2007). Thermodynamic Models: Fundamentals & Computational Aspects. second ed. ed. Denmark: Tie-Line Publications.Search in Google Scholar

37. Ng et al., H.J. Ng CJC, H. Schroeder (2001). Water Content of Natural Gas Systems Containing Acid Gas. Tulsa: GPA Research Report.Search in Google Scholar

38. Lukacs, J. & Robinson, D.B. (1963). Water content of sour hydrocarbon systems. Society of Petroleum Engineers Journal, 3(4), 293–297. DOI: 10.2118/614-PA.10.2118/614-Open DOISearch in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering