INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Karthikeyan, R., Davis, L.C., Erickson, L.E., Al-Khatib, K., Kulakow, P.A., Barnes, P.L., Hutchinson, S.L. & Nurzhanova, A.A. (2004). Potential for plant-based remediation of pesticide-contaminated soil and water using nontarget plants such as trees, shrubs, and grasses. Critical Reviews in Plant Sciences. 23(1), 91–101. DOI: 10.1080/07352680490273518.10.1080/07352680490273518Open DOISearch in Google Scholar

2. Davis, L.C., Erickson, L.E., Narayanan, M. & Zhang, Q. (2003). Modeling and design of phytoremediation, In S.C. McCutcheon & J. L. Schnoor (Eds), Phytoremediation: Transformation and Control of Contaminants (pp. 661–694). Science and Technology&A Wiley-Intersciences Series of Texts and Monographs. DOI: 10.1002/047127304X.ch21.10.1002/047127304X.ch21Open DOISearch in Google Scholar

3. Li, G.Y., Hu, N., Ding, D.X., Zheng, J.F., Liu, Y.L., Wang, Y.D. & Nie, X.Q. (2011). Screening of plant species for phytoremediation of uranium, thorium, barium, nickel, strontium and lead contaminated soils from a uranium mill tailings repository in south china. Bulletin of Environmental Contamination and Toxicology. 86(6), 646–652. DOI: 10.1007/s00128-011-0291-2.10.1007/s00128-011-0291-221523506Open DOISearch in Google Scholar

4. Prasad, M.N.V. (2015). Bioremediation and bioeconomy (1st ed.). Elsevier Inc.Search in Google Scholar

5. Maestri, E. & Marmiroli N. (2011). Transgenic plants for phytoremediation. International Journal of Phytoremediation. 13(1), 264–279. DOI: 10.1080/15226514.2011.568549.10.1080/15226514.2011.56854922046764Open DOISearch in Google Scholar

6. Witters, N., Mendelsohn, R.O., Van Slycken, S., Weyens, N., Schreurs, E., Meers, E., Tack, F., Carleer, R. & Vangronsveld, J. (2012). Phytoremediation, a sustainable remediation technology? Conclusions from a case study. I: Energy production and carbon dioxide abatement. Biomass & Bioenergy. 39, 454–469. DOI: 10.1016/j.biombioe.2011.08.016.10.1016/j.biombioe.2011.08.016Open DOISearch in Google Scholar

7. Witters, N., Van Slycken, S., Ruttens, A., Adriaensen, K., Meers, E., Meiresonne, L., Tack, F.M., Thewys, T., Laes, E. & Vangronsveld, J. (2009). Short-rotation coppice of willow for phytoremediation of a metal-contaminated agricultural area: A sustainability assessment. BioEnergy Research. 2(3), 144–152. DOI: 10.1007/s12155-009-9042-1.10.1007/s12155-009-9042-1Open DOISearch in Google Scholar

8. Gomes, H.I. (2012). Phytoremediation for bioenergy: Challenges and opportunities. Environmental Technology Reviews. 1(1), 59–66. DOI: 10.1080/09593330.2012.696715.10.1080/09593330.2012.696715Search in Google Scholar

9. Nsanganwimana, F., Pourrut, B., Waterlot, C., Louvel, B., Bidar, G., Labidi, S., Fontaine, J., Muchembled, J., Sahraoui, A.L.H., Fourrier, H. & Donay, F. (2015). Metal accumulation and shoot yield of miscanthus x giganteus growing in contaminated agricultural soils: Insights into agronomic practices. Agriculture Ecosystems & Environment. 213, 61–71. DOI: 10.1016/j.agee.2015.07.023.10.1016/j.agee.2015.07.023Open DOISearch in Google Scholar

10. Brosse, N., Dufour, A., Meng, X.Z., Sun, Q.N. & Ragauskas, A. (2012). Miscanthus: A fast-growing crop for biofuels and chemicals production. Biofuels Bioproducts & Biorefining-Biofpr. 6(5), 580–598. DOI: 10.1002/bbb.1353.10.1002/bbb.1353Search in Google Scholar

11. Beale, C.V., Bint, D.A. & Long, S.P. (1996). Leaf photosynthesis in the c-4-grass miscanthus x giganteus, growing in the cool temperate climate of southern england. J. Exp. Bot. 47(2), 267–273. DOI: 10.1093/jxb/47.2.267.10.1093/jxb/47.2.267Search in Google Scholar

12. Christian, D., Bullard, M. & Wilkins, C. (1997). The agronomy of some herbaceous crops grown for energy in southern england. Aspects Appl. Biol. 49, 41–51.Search in Google Scholar

13. Gopalakrishnan, G., Negri, M.C. & Snyder, S.W. (2011). A novel framework to classify marginal land for sustainable bio-mass feedstock production. J. Environ. Qual. 40(5), 1593–1600. DOI: 10.2134/jeq2010.0539.10.2134/jeq2010.0539Open DOISearch in Google Scholar

14. Nsanganwimana, F., Pourrut, B., Mench, M. & Douay, F. (2014). Suitability of miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review. J. Environ. Manage. 143, 123–134. DOI: 10.1016/j.jenvman.2014.04.027.10.1016/j.jenvman.2014.04.027Open DOISearch in Google Scholar

15. Pidlisnyuk, V., Stefanovska, T., Lewis, E.E., Erickson, L.E. & Davis, L.C. (2014). Miscanthus as a productive biofuel crop for phytoremediation. Criti. Rev. Plant Sci. 33(1), 1–19. DOI: 10.1080/07352689.2014.847616.10.1080/07352689.2014.847616Open DOISearch in Google Scholar

16. Techer, D., Martinez-Chois, C., Laval-Gilly, P., Henry, S., Bennasroune, A., D’Innocenzo, M. & Falla, J. (2012). Assessment of miscanthus x giganteus for rhizoremediation of long term pah contaminated soils. Appl. Soil Ecol. 62, 42–49. DOI: 10.1016/j.apsoil.2012.07.009.10.1016/j.apsoil.2012.07.009Open DOISearch in Google Scholar

17. Kocon, A. & Matyka, M. (2012). Phytoextractive potential of miscanthus giganteus and sida hermaphrodita growing under moderate pollution of soil with Zn and Pb. J. Food, Agri. & Environ. 10(2), 1253–1256.Search in Google Scholar

18. Hodkinson, T., Renvoize, S. & Chase, M. (1997). Systematics of miscanthus. Aspects Appl. Biol. 49, 189–198.Search in Google Scholar

19. Kahle, P., Beuch, S., Boelcke, B., Leinweber, P. & Schulten, H.R. (2001). Cropping of miscanthus in central europe: Biomass production and influence on nutrients and soil organic matter. Eur. J. Agron. 15(3), 171–184. DOI: 10.1016/S1161-0301(01)00102-2.10.1016/S1161-0301(01)00102-2Open DOISearch in Google Scholar

20. Speller, C.S. (1993). The potential for growing biomass crops for fuel on surplus land in the UK. Outlook Agricu. 22(1), 23–29.10.1177/003072709302200105Search in Google Scholar

21. Huisman, W., Venturi, P. & Molenaar, J. (1997). Costs of supply chains of miscanthus giganteus. Industrial Crops and Products. 6(3–4), 353–366. DOI: 10.1016/S0926-6690(97)00026-5.10.1016/S0926-6690(97)00026-5Open DOISearch in Google Scholar

22. Semere, I.T. & Slater, F.M. (2007). Invertebrate populations in miscanthus (Miscanthus×giganteus) and reed canary-grass (Phalaris arundinacea) fields. Biomass and Bioenergy. 31(1), 30–39. DOI: 10.1016/j.biombioe.2006.07.002.10.1016/j.biombioe.2006.07.002Open DOISearch in Google Scholar

23. Hedde, M., Van Oort, F., Boudon, E., Abonnel, F. & Lamy, I. (2013a). Responses of soil macroinvertebrate communities to Miscanthus cropping in different trace metal contaminated soils. Biomass and Bioenergy. 55, 122–129. DOI: 10.1016/j.biombioe.2013.01.016.10.1016/j.biombioe.2013.01.016Open DOISearch in Google Scholar

24. Hedde, M., van Oort, F., Renouf, E., Thénard, J. & Lamy, I. (2013b) Dynamics of soil fauna after plantation of perennial energy crops on polluted soils. Appl. Soul Ecol. 66, 29–39. DOI: 10.1016/j.apsoil.2013.01.012.10.1016/j.apsoil.2013.01.012Open DOISearch in Google Scholar

25. Al Souki, K.S., Louvel, B., Douay, F. & Pourrut, B. (2017). Assessment of Miscanthus x giganteus capacity to restore thefunctionality of metal-contaminated soils: Ex situ experiment. Appl. Soil Ecol. 115(7), 44–52. DOI: 10.1016/j.apsoil.2017.03.002.10.1016/j.apsoil.2017.03.002Open DOISearch in Google Scholar

26. Clifton-Brown, J., Hastings, A., Mos, M., McCalmont, J.P., Ashman, C., Awty-Carroll, D., Cerazy, J., Chiang, Y.C., Cosentino, S. & Cracroft-Eley, W., et al. (2017). Progress in upscaling miscanthus biomass production for the european bio-economy with seed-based hybrids. Global Change Biol. Bioen. 9, 6–17. DOI: 10.1111/gcbb.12357.10.1111/gcbb.12357Open DOISearch in Google Scholar

27. Pidlisnyuk, V., Erickson, L., Kharchenko, S. & Stefanovska, T. (2014). Sustainable land management: Growing miscanthus in soils contaminated with heavy metals. J. Environ. Protec. 5(8), 723–730. DOI: 10.4236/jep.2014.58073.10.4236/jep.2014.58073Open DOISearch in Google Scholar

28. Pidlisnyuk, V., Trögl, J., Stefanovska, T., Shapoval, P. & Erickson, L. (2016). Preliminary results on growing second generation biofuel crop miscanthus x giganteus at the polluted military site in Ukraine. Nova Biotechnol. Chim. 15(1), 77–84. DOI: 10.1515/nbec-2016-0008.10.1515/nbec-2016-0008Open DOISearch in Google Scholar

29. Stefanovska, T., Pidlisnyk, V. & Tomashkin, J. (2015). Growing second generation biofuel plant Miscanthus x giganteus at military soils contaminated with heavy metals. Bioenergy. 1, 50–53. (in Ukrainian).Search in Google Scholar

30. Andersen, J. (2000, February) Management of contaminated sites and land in Central and Eastern Europe. Retrieved June 2, 2017, from http://www.statensnet.dk/pligtarkiv/fremvis.plSearch in Google Scholar

31. Lindberg, A.L., Goessler, W., Gurzau, E., Koppova, K., Rudnai, P., Kumar, R., Fletcher, T., Leonardi, G., Slotova, K. & Gheorghiu, E., et al. (2006). Arsenic exposure in Hungary, Romania and Slovakia. J. Environ. Monit. 8(1), 203–208. DOI: 10.1039/B513206A.10.1039/B513206Open DOISearch in Google Scholar

32. Leonardi, G., Vahter, M., Clemens, F., Goessler, W., Gurzau, E., Hemminki, K., Hough, R., Koppova, K., Kumar, R. & Rudnai, P., et al. (2012). Inorganic arsenic and basal cell carcinoma in areas of Hungary, Romania, and Slovakia: A case-control study. Environ. Health Perspect. 120(5), 721–726. DOI: 10.1289/ehp.1103534.10.1289/ehp.1103534Open DOISearch in Google Scholar

33. Ceřveny, J. (2017). Experience on sanitation of contaminated places at the sites after Soviet Army. At: Materials of the workshop in the field of contaminated sites, Banska Bystrica, Slovakia. Available at: http://old.sazp.sk/public/index/go.php?id=2229HOME (in Slovakian).Search in Google Scholar

34. State Standard of Ukraine. (2001). Ukrainian standard: Soil quality. Preliminary preparation of samples for physical-chemical analysis. DSTU ISO 11464-2001. Kyiv, Ukraine.Search in Google Scholar

35. State Standard of Ukraine. (2007). National standard of Ukraine. Quality of soil. The method for determination of the nitrate and ammonium nitrogen. DSTU 4729-2007. Kyiv, Ukraine.Search in Google Scholar

36. State Standard of Ukraine. (2004). National Standard of Ukraine. Quality of soil. The method for determination of organic matter. DSTU 4289-2004. Kyiv, Ukraine.Search in Google Scholar

37. Mehlich, A. (1978). New extractant for soil test evaluation of phosphorus, potassium, magnesium, calcium, sodium, manganese and zinc. Commun. Soil Sci. Plant Anal. 9(6), 477–492. DOI: 10.1080/00103627809366824.10.1080/00103627809366824Open DOISearch in Google Scholar

38. United States Environmental Protection Agency. (2007). United States Standard: Field Portable X-Ray Fluorescence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment. SW-846 Test Method 6200–2007. Washington DC.Search in Google Scholar

39. State Standard of Ukraine. (2007). General requirements for the competence of testing and calibration laboratories. DSTU ISO/IEC 17025. Kyiv, Ukraine.Search in Google Scholar

40. Altman, D.G. (1990). Practical statistics for medical research. London: Chapman & Hall.10.1201/9780429258589Search in Google Scholar

41. Hammer, Ø., Harper, D.A.T. & Ryan, P.D. (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4(1): 9pp. http://palaeoelectronica.org/2001_1/past/issue1_01.htm.Search in Google Scholar

42. Hettiarachchi, G.M., Attanayake, C.P., Defoe, P.P. & Martin, S.E. (2016). Mechanisms to reduce risk potential. Sowing seeds in the city, Springer. 3, 155–170. DOI: 10.1007/978-94-017-7456-7_13.Essington, M.E. (2015). Soil and water chemistry: An integrative approach (2nd ed.). CRC press: Taylot & Francis Group.10.1007/978-94-017-7456-7_13.Essington.E.(2015).:(2nded.).CRCpress:Taylot&Open DOISearch in Google Scholar

43. Hettiarachchi, G.M., Attanayake, C.P., Defoe, P.P. & Martin, S.E. (2016). Mechanisms to reduce risk potential. Sowing seeds in the city, Springer. 3, 155–170. DOI: 10.1007/978-94-017-7456-7_13.10.1007/978-94-017-7456-7_13Open DOISearch in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering