Accesso libero

Caffeine degradation in water by gamma irradiation, ozonation and ozonation/gamma irradiation

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Martin, M. J., Pablos, F., & Gonzalez, A. G. (1998).Discrimination between arabica and robusta green coffee varieties according to their chemical composition.Talanta, 46, 1259-1264.10.1016/S0039-9140(97)00409-8Search in Google Scholar

2. Silvarolla, M. B., Mazzafera, P., & de Lina, M. M. A. (2000). Caffeine content of Ethiopian Caffea Arabica beans. Genet. Mol. Biol., 23, 213-218.10.1590/S1415-47572000000100036Search in Google Scholar

3. Barber, L. B., Leenheer, J. A., Pereira, W. E., Noyes, T.L., Brown, G. K., Tabor, C. F., & Writer, J. H. (1995).Organic compounds and sewage-derived contaminants.In R. H. Meade (Ed.) Contaminants in the Mississippi River 1987-1992 (pp. 115-135). US Geological Survey Circular 1133. Virginia.Search in Google Scholar

4. Paxeus, N., & Schröder, H. F. (1996). Screening for nonregulated organic compounds in municipal wastewater in Göteborg, Sweden. Water Sci. Technol., 33, 9-15.10.2166/wst.1996.0076Search in Google Scholar

5. Seiler, R. L., Zaugg, S. D., Thomas, J. M., Howard, D.L. (1999). Caffeine and pharmaceuticals as indicators of wastewater contamination in wells. Ground Water, 37, 405-410.10.1111/j.1745-6584.1999.tb01118.xSearch in Google Scholar

6. Pandey, A., Soccol, C. R., Nigam, P., Brand, D., Mohan, R., & Roussos, S. (2000). Biotechnological potential of coffee pulp and coffee husk for bioprocesses. Biochem.Eng. J., 6, 153-162.10.1016/S1369-703X(00)00084-XSearch in Google Scholar

7. Rojas, J. B. U., Verreth, J. A. J., Amato, S., & Huisman, E.S. (2003). Biological treatments affect the chemical composition of coffee pulp. Bioresour. Technol., 89, 267-274.10.1016/S0960-8524(03)00070-1Search in Google Scholar

8. Landolt, H. P., Dijk, D. J., Gauss, S. E., & Borbely, A.A. (1995). Caffeine reduces low-frequency delta activity in the human sleep EEG. Neuropsychopharmacology, 12, 229-238.10.1016/0893-133X(94)00079-FSearch in Google Scholar

9. Shilo, L., Sabbah, H., Hadari, R., Kovatz, S., Weinberg, U., Dolev, S., Dagan, Y., & Shenkman, L. (2002). The effects of coffee consumption on sleep and melatonin sectretion.Sleep Med., 3, 271-273.10.1016/S1389-9457(02)00015-1Search in Google Scholar

10. Gokulakrishnan, S., Chandraraj, K., Sathyanarayana, N., & Gummadi, N. (2005). Microbial and enzymatic methods for the removal of caffeine. Enzyme Microb. Technol., 37, 225-232.10.1016/j.enzmictec.2005.03.004Search in Google Scholar

11. Udayasankar, K., Raghavan, C. V., Rao, P. N. S., Rao, K.L., Kuppuswamy, S., & Ramanathan, P. K. (1983). Studies on the extraction of caffeine from coffee beans. J. Food Sci. Technol.-Mysore, 20, 64-67.Search in Google Scholar

12. Cesaro, A., Rosso, E., & Crescenzl, V. (1976). Thermodynamics of caffeine. J. Phys. Chem., 80(3), 335-339.10.1021/j100544a026Search in Google Scholar

13. Gehringer, P., Proksch, E., Eschweiler, H., & Szinovatz, W. (1992). Remediation of groundwater polluted with chlorinated ethylenes by ozone-electron beam irradiation treatment. Appl. Radiat. Isot., 43(9), 1107-1115.10.1016/0883-2889(92)90052-GSearch in Google Scholar

14. Getoff, N. (1996). Radiation induced degradation of water pollutants-state of the art. Radiat. Phys. Chem., 47(4), 581-593.10.1016/0969-806X(95)00059-7Search in Google Scholar

15. Lichtscheidl, J., & Getoff, N. (1976). Radiolysis of halogenated aromatic compounds in aqueous solutions-I conductometric pulse radiolysis and steady-state studies of the reaction of eaq -. Int. J. Radiat. Phys. Chem., 8(6), 661-665.10.1016/0020-7055(76)90037-1Search in Google Scholar

16. Lin, K., Cooper, W. J., Nickelsen, M. G., Kurucz, C. N., & Waite, T. D. (1995). Decomposition of aqueous solutions of phenol using high energy electron beam irradiation. A large scale study. Appl. Radiat. Isot., 46(12), 1307-1316.10.1016/0969-8043(95)00236-7Search in Google Scholar

17. Wang, T., Waite, T. D., Kurucz, C., & Cooper, W. J. (1994).Oxidant reduction and biodegradability improvement of paper mill effluent by irradiation. Water Res., 28(1), 237-241.10.1016/0043-1354(94)90139-2Search in Google Scholar

18. Getoff, N. (1989). Advancements of radiation induced degradation of pollutatnts in drinking and waste water.Appl. Radiat. Isot., 40(7), 585-594.10.1016/0883-2889(89)90114-7Search in Google Scholar

19. Glaze, W. H., Weinberg, H. S., Krasner, S. W., & Sclimenti, M. J. (1991) Trends in aldehyde formation and removal through plants using ozonation and biological active filters. In Proceedings of the Conference AWWAAC- -Water Quality for the New Decade, 22-27 June 1991 (pp. 913-943). Philadelphia.Search in Google Scholar

20. Getoff, N. (1997). Peroxyl radicals in the treatment of waste solutions. In Z. B. Alfassi (Ed.), Peroxyl radicals. (pp. 173-234). Chichester: Wiley.Search in Google Scholar

21. Hoigné, J., & Bader, H. (1983). Rate constants of reaction of ozone with organic and inorganic compounds in water-I non-dissociating organic compounds. Water Res., 17(12), 173-183.10.1016/0043-1354(83)90098-2Search in Google Scholar

22. Rice, R. (1996). Applications of ozone for industrial wastewater treatment. A review. Ozone-Sci. Eng., 18(6), 477-515.10.1080/01919512.1997.10382859Search in Google Scholar

23. Yao, C. C. D., & Haag, W. R. (1991). Rate constants for direct reactions of ozone with several drinking water contaminants. Water Res., 25(7), 761-773.10.1016/0043-1354(91)90155-JSearch in Google Scholar

24. Hart, E. J., Sehested, K., Bjergbakke, E., & Holcman, J. (1987). Gamma-ray initiated decomposition of aqueous ozone solution. Radiat. Phys. Chem., 29, 399-403.10.1016/1359-0197(87)90013-0Search in Google Scholar

25. Hoigné, J. (1998). Chemistry of aqueous ozone and transformation of pollutants by ozonation and advanced oxidation processes. In The Handbook of Environmental Chemistry (Vol. 5, Part C, pp. 83-141). Berlin: Springer.Search in Google Scholar

26. Sehested, K., Holcman, J., & Hart, E. J. (1983). Rate constants and products of the reactions of e- aq, O2 ·-, and H with ozone in aqueous solutions. J. Phys. Chem., 87, 1951-1954.10.1021/j100234a024Search in Google Scholar

27. Moore, M. T., Greenway, S. L., Farris, J. L., & Guerra, B. (2008). Assessing caffeine as an emerging environmental concern using conventional approaches. Arch. Environ.Contam. Toxicol., 54, 31-35.10.1007/s00244-007-9059-4Search in Google Scholar

28. Nash, T. (1973). The colorometric estimation of formaldehyde by means of the Hantzsch method. J. Biochem., 55, 416-421.10.1042/bj0550416Search in Google Scholar

29. American Public Health Association. (1997). Standard methods for the examination of water and wastewater. 5220B Chemical oxygen demand open reflux method. (20th ed.). Washington DC.Search in Google Scholar

30. Christensen, H., Sehested, K., & Løgager, T. (1994). Temperature dependence of the rate constant for reactions of hydrated electrons with H, OH and H2O2. Radiat. Phys.Chem., 43, 527-531.10.1016/0969-806X(94)90163-5Search in Google Scholar

31. Sanchez, M., Wolfger, H., & Getoff, N. (2002). Radiation- -induced degradation of 4-chloroaniline in aqueous solution.Radiat. Phys. Chem., 65(6), 611-620.10.1016/S0969-806X(02)00213-XSearch in Google Scholar

32. Anbar, M., Farhataziz, & Ross, A. B. (1975). Selected specific rates of reactions of transients from water in aqueous solution. II. Hydrogen atom. (National Standard Reference Data Series). Washington: US National Bureau of Standards.10.2172/4211292Search in Google Scholar

33. Buxton, G. V., Greenstock, C. L., Helman, W. P., & Ross, A. B. (1988). Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms, hydroxyl radicals in aqueous solutions. J. Phys. Chem. Ref. Data, 17, 533-538.10.1063/1.555805Search in Google Scholar

34. Anbar, M., Bambenek, M., & Ross, A. B. (1973). Selected specific rates of reactions of transients from water in aqueous solution. I. Hydrated electron. (National Standard Reference Data Series. NSRDS-NBS 43). Washington: US National Bureau of Standards.10.2172/4445489Search in Google Scholar

35. Bielski, B. H. J., Cabelli, D. E., Arudi, R. L., & Ross, A. B. (1985). Reactivity of HO2/O2 - radicals in aqueous solution.J. Phys. Chem. Ref. Data, 14(4), 1041-1100.10.1063/1.555739Search in Google Scholar

36. Getoff, N., & Prucha, M. Z. (1983). Spectroscopic and kinetic characteristics of HO2 and O2 - species studied by pulse radiolysis. Naturforscher., 3, 589-590.10.1515/zna-1983-0520Search in Google Scholar

37. Bielski, B. H. J., & Cabelli, D. E. (1991). Review: highlights of current research involving superoxide and perhydroxyl radicals in aqueous solutions. Int. J. Radiat.Biol., 59, 291-319.10.1080/09553009114550301Search in Google Scholar

38. Cabelli, D. E. (1997). The reactions of HO2 ·/O2 ·- radicals in aqueous solutions. In Z. B. Alfassi (Ed.), Peroxyl radicals. (pp. 407-437). Chichester: Wiley.Search in Google Scholar

39. Belay, A., Ture, K., Redi, M., & Asfaw, A. (2008). Measurement of caffeine in coffee beans with UV/vis spectrometer.Food Chem., 108, 310-315.10.1016/j.foodchem.2007.10.024Search in Google Scholar

40. Bühler, R. E., Staehelin, J., & Hoigne, J. (1984). Ozone decomposition in water studied by pulse radiolysis. 1.HO2/O2 - and HO3/O3 - as intermediates. J. Phys. Chem., 88, 2560-2564.10.1021/j150656a026Search in Google Scholar

41. Steahelin, J., Bühler, R. E., & Hoigne, J. (1984). Ozone decomposition in water studied by pulse radiolysis 2.OH and HO4 as chain intermediates. J. Phys. Chem., 88, 5999-6004.10.1021/j150668a051Search in Google Scholar

42. Tomiyasu, H., Fukutomi, H., & Gordon, G. (1985). Kinetics and mechanism of ozone decomposition by basic aqueous solution. Inorg. Chem., 24, 2962-2966.10.1021/ic00213a018Search in Google Scholar

43. Liguori, A., Mascaro, P., Porcelli, B., Sindona, G., & Uccella, N. (1991). Identification of caffeine and its metabolites in human urine extracts by electron impact ionization tandem mass spectrometry. J. Mass Spectrom., 26(6), 608-612.10.1002/oms.1210260613Search in Google Scholar

44. Shi, X., & Dalal, N. S. (1991). Antioxidant behaviour of caffeine: efficient scavengers of hydroxyl radicals. Food Chem. Toxicol., 29(1), 1-6.10.1016/0278-6915(91)90056-DSearch in Google Scholar

45. Stadler, R. H., Richoz, J., Turesky, R. J., Wielti, D. H., & Fay, L. B. (1996). Oxidation of caffeine and related methylxanthines in ascorbate and polyphenol-driven Fenton-type oxidations. Free Radic. Res., 24(3), 225-240.10.3109/107157696090880208728124Search in Google Scholar

46. Telo, J. P., Vieira, & A. J. S. C. (1997). Mechanism of free radical oxidation of caffeine in aqueous solution. J. Chem.Soc. Perkin Trans. 2, 9, 1755-1757.10.1039/a700944eSearch in Google Scholar

47. Kolonko, K. J., Shapiro, R. H., Barkley, R. M., & Sievers, R. E. (1979). Ozonation of caffeine in aqueous solution.J. Org. Chem., 44(22), 3769-3778.10.1021/jo01336a007Search in Google Scholar

48. Dalmazio, I., Santos, L. S., Lopes, R. P., Eberlin, M. N., & Augusti, R. (2005). Advanced oxidation of caffeine in water: on-line and real-time monitoring by electrospray mass spectrometry. Environ. Sci. Technol., 39, 5982-5988.10.1021/es047985vSearch in Google Scholar

49. Torun, M., Şolpan, D., & Güven, O. (2011). Treatment of water contaminated with chlorinated organic herbicide 2,4-D by an ozone/gamma process. Ozone-Sci. Eng., 33(1), 50-65.10.1080/01919512.2011.536743Search in Google Scholar

50. Yang, M., Uesugi, K., & Myoga, H. (1999). Ammonia removal in bubble column by ozonation in the presence of bromide. Water Res., 33(8), 1911-1917.10.1016/S0043-1354(98)00364-9Search in Google Scholar

51. Bauman, F. J. (1974). Dichromate reflux chemical oxygen demand, a proposed method for chloride correction in highly saline wastes. Anal. Chem., 46, 1336-1338.10.1021/ac60345a039Search in Google Scholar

52. Kim, B. R. (1989). Effect of ammonia on COD analysis.Journal of the Water Pollution Control Federation, 61(5), 614-617.Search in Google Scholar

53. Lee, E., Lee, H., Kim, Y. K., Sohn, K., & Lee, K. (2011).Hydrogen peroxide interference in chemical oxygen demand during ozone based advanced oxidation of anaerobically digested livestock wastewater. Int. J. Environ.Sci. Technol., 8(2), 381-388.10.1007/BF03326225Search in Google Scholar

54. Kang, Y. W., Cho, M. J., & Hwang, K. Y. (1999). Correction of hydrogen peroxide interference on standard chemical oxygen demand test. Water Res., 33(5), 1247-1251.10.1016/S0043-1354(98)00315-7Search in Google Scholar

55. Zak, S. (2008). Problem of correction of the chemical oxygen demand values determined in wastewaters treated by methods with hydrogen peroxide. Proceedings of ECOpole, 2(2), 409-414.Search in Google Scholar

56. Pala, A., & Erden, G. (2005). Decolorization of a baker’s yeast industry effluent by Fenton oxidation. J. Hazard.Mater., B127, 141-148.10.1016/j.jhazmat.2005.06.03316122871Search in Google Scholar

57. Martinez, N. S. S., Fernandez, J. F., Segura, X. F., & Ferrer, A. S. (2003). Pre-oxidation of an extremely polluted industrial wastewater by the Fenton’s reagent. J. Hazard.Mater., B101, 315-322. Search in Google Scholar

eISSN:
0029-5922
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other