INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Tan J.C., Looney L., Hashmi M.S.J. Component repair using HVOF thermal spraying, Journal of Materials Processing Technology1999, 92-93, 203-208.10.1016/S0924-0136(99)00113-2Search in Google Scholar

2. Oksa M. et al. Optimization and Characterization of High Velocity Oxy-fuel Sprayed Coatings: Techniques, Materials, and Applications, Coatings2011, 1, 17–52.10.3390/coatings1010017Search in Google Scholar

3. Nahvi S.M., Jafari M. Microstructural and mechanical properties of advanced HVOF-sprayed WC-based cermet coatings, Surface and Coatings Technology2016, 286, 95–102.10.1016/j.surfcoat.2015.12.016Search in Google Scholar

4. Zhou W. et al. High temperature wear performance of HVOF-sprayed Cr3C2–WC–NiCoCrMo and Cr3C2–NiCr hardmetal coatings, Applied Surface Science2017, 416, 33–44.10.1016/j.apsusc.2017.04.132Search in Google Scholar

5. Bolelli G. et al. Cermet coatings with Fe-based matrix as alternative to WC–CoCr: Mechanical and tribological behavi-ours, Surface and Coatings Technology2012, 206, 4079–4094.10.1016/j.surfcoat.2012.03.094Search in Google Scholar

6. Brezinová J. et al. Study of selected properties of thermally sprayed coatings containing WC and WB hard particles, Acta Mechanica et Automatica2016, 10, 296–299.10.1515/ama-2016-0046Search in Google Scholar

7. Berger L.M. et al. Microstructure and Properties of WC–10%Co–4%Cr Sprayed Powders and Coatings: Part. Powder Characterization, Journal of Thermal Spray Technology2001, 10, 311-325.10.1361/105996301770349402Search in Google Scholar

8. Brezinová J. et al. Microstructure, Wear Behavior and Corrosion Resistance of WC–FeCrAl and WC–WB–Co Coatings, Metals2018, 8, 399.10.3390/met8060399Search in Google Scholar

9. Brezinová J. et al. Quality Evaluation of HVOF Coatings on the Basis of WC–Co in Tribocorrosive Conditions, Materials Science Forum2015, 811, 63–66.10.4028/www.scientific.net/MSF.811.63Search in Google Scholar

10. Thakur L. et al. An investigation on erosion behavior of HVOF sprayed WC–CoCr coatings, Applied Surface Science2011, 258, 1225–1234.10.1016/j.apsusc.2011.09.079Search in Google Scholar

11. Cui S.Y. et al. Slurry Erosion Behavior of F6NM Stainless Steel and High-Velocity Oxygen Fuel-Sprayed WC–10Co– 4Cr Coating, Journal of Thermal Spray Technology2017, 26, 473–482.10.1007/s11666-016-0515-4Search in Google Scholar

12. Landová M., Brezinová J. Determination of selected properties and fracture toughness of HVOF coatings, Koroze a Ochrana Materialu2016, 60, 128–131.10.1515/kom-2016-0024Search in Google Scholar

13. Ojala N. et al. Wear performance of quenched wear resistant steels in abrasive slurry erosion, Wear2016, 354–355, 21–31.10.1016/j.wear.2016.02.019Search in Google Scholar

14. Yang G.J., Gao P.H., Li C.X. et al. Simultaneous strengthening and toughening effects in WC–(nanoWC–Co), Scripta Materialia2012, 66, 10, 777-780.10.1016/j.scriptamat.2012.02.005Search in Google Scholar

15. Mi P., Zhao H., Wang T., Ye F. Sliding wear behavior of HVOF sprayed WC–(nano-WC–Co) coating at elevated temperatures, Materials Chemistry and Physics2018, 206, 1-6.10.1016/j.matchemphys.2017.09.066Search in Google Scholar

16. Mottaghi M., Ahmadian M. Comparison of the wear behavior of WC/(FeAl-B) and WC–Co composites at high temperatures, International Journal of Refractory Metals and Hard Materials2017, 67, 105–114.10.1016/j.ijrmhm.2017.05.003Search in Google Scholar

eISSN:
1804-1213
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Chemical Engineering, Materials Sciences, Ceramics and Glass