INFORMAZIONI SU QUESTO ARTICOLO

Cita

Alvarado, N., Adams, S. S., & Burbeck, S. (2002). The role of emotion in an architecture of mind. IBM Research.Search in Google Scholar

Baars, B. (1988). A Cognitive Theory of Consciousness. Cambridge: Cambridge University Press.Search in Google Scholar

Baars, B., & Franklin, S. (2003). How conscious experience and working memory interact. Trends in Cognitive Science, 7, 166–172.10.1016/S1364-6613(03)00056-1Search in Google Scholar

Bach, J. (2003). The micropsi agent architecture. Paper presented at the Proceedings of ICCM-5, international conference on cognitive modeling, Bamberg, Germany.Search in Google Scholar

Bach, J. (2009). Principles of Synthetic Intelligence: Psi: An Architecture of Motivated Cognition. Oxford: Oxford University Press.10.1093/acprof:oso/9780195370676.001.0001Search in Google Scholar

Bach, J. (2012). Modeling Motivation and the Emergence of Affect in a Cognitive Agent Theoretical Foundations of Artificial General Intelligence (pp. 241-262): Springer.10.2991/978-94-91216-62-6_13Search in Google Scholar

Barto, A. G. (2007). Temporal difference learning. Scholarpedia, 2(11), 1604.10.4249/scholarpedia.1604Search in Google Scholar

Belavkin, R. V. (2001a). Modelling the inverted-U effect with ACT-R. In Erik M. Altmann, Wayne D. Gray, A. Cleeremans & Christian D. Schunn (Eds.), Proceedings of the 2001 Fourth International Conference on Cognitive Modeling (pp. 296). Hillsdale, NJ Lawrence Erlbaum Associates.Search in Google Scholar

Belavkin, R. V. (2001b). The role of emotion in problem solving. Paper presented at the Proceedings of the AISB’01 Symposium on emotion, cognition and affective computing, Heslington, York, England.Search in Google Scholar

Berridge, K. C., & Kringelbach, M. L. (2008). Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology, 199(3), 457-480. doi: 10.1007/s00213-008-1099-610.1007/s00213-008-1099-6Search in Google Scholar

Berridge, K. C., & Robinson, T. E. (1998). What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Research Reviews, 28(3), 309-369.10.1016/S0165-0173(98)00019-8Search in Google Scholar

Bindra, D. (1978). How adaptive behavior is produced: a perceptual-motivational alternative to response reinforcements. Behavioral and Brain Sciences, 1(01), 41-52.10.1017/S0140525X00059380Search in Google Scholar

Bogacz, R., Usher, M., Zhang, J., & McClelland, J. L. (2007). Extending a biologically inspired model of choice: multi-alternatives, nonlinearity and value-based multidimensional choice. Philos Trans R Soc Lond B Biol Sci.10.1098/rstb.2007.2059244077817428774Search in Google Scholar

Breazeal, C. (1998). A Motivational System for Regulating Human-Robot Interaction. Paper presented at the AAAI98, Madison, WI.Search in Google Scholar

Camras, L. A. (2011). Differentiation, dynamical integration and functional emotional development. Emotion Review, 3(2), 138-146.10.1177/1754073910387944Search in Google Scholar

Cañamero, D. (1997). Modeling motivations and emotions as a basis for intelligent behavior. Paper presented at the Proceedings of the first international conference on Autonomous agents.10.1145/267658.267688Search in Google Scholar

Canamero, Lola D. (2003). Designing Emotions for Activity Selection in Autonomous Agents. In R. Trappl, P. Petta & S. Payr (Eds.), Emotions in Humans and Artifacts (pp. 115-148). Cambridge, MA: MIT Press.10.7551/mitpress/2705.003.0005Search in Google Scholar

Cannon, W. B. (1927). The James-Lange theory of emotions: A critical examination and an alternative theory. The American Journal of Psychology, 39(1/4), 106-124.10.2307/1415404Search in Google Scholar

Cannon, W. B. (1929). Organization For Physiological Homeostasis. Physiol Rev., 9, 399-431.10.1152/physrev.1929.9.3.399Search in Google Scholar

Conway, M. (2001). Sensory–perceptual episodic memory and its context: autobiographical memory. Philos. Trans. R. Soc. Lond B., 356, 1375–1384.10.1098/rstb.2001.0940108852111571029Search in Google Scholar

D’Mello, S., Ramamurthy, U., Negatu, A., & Franklin, S. (2006). A Procedural Learning Mechanism for Novel Skill Acquisition. In T. Kovacs & James A. R. Marshall (Eds.), Proceeding of Adaptation in Artificial and Biological Systems, AISB’06 (Vol. 1, pp. 184–185). Bristol, England: Society for the Study of Artificial Intelligence and the Simulation of Behaviour.Search in Google Scholar

Damasio, A. (2003). Looking for Spinoza: Joy, Sorrow and the Feeling Brain. New York: Harcourt.Search in Google Scholar

Damasio, A. (1999). The Feeling of What Happens. New York: Harcourt Brace.Search in Google Scholar

Daw, N., Niv, Y., & Dayan, P. (2005). Actions, policies, values, and the basal ganglia. In E. Bezard (Ed.), Recent Breakthroughs in Basal Ganglia Research.Search in Google Scholar

Daw, N. D., Niv, Y., & Dayan, P. (2005). Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. [Research Support, Non-U.S. Gov’t]. Nature Neuroscience, 8(12), 1704-1711. doi: 10.1038/nn156010.1038/nn156016286932Search in Google Scholar

Dehaene, S., Changeux, J.-P., Naccache, L., Sackur, J., & Sergent, C. (2006). Conscious, preconscious, and subliminal processing: a testable taxonomy. Trends in Cognitive Sciences, 10, 204–211.10.1016/j.tics.2006.03.00716603406Search in Google Scholar

Diener, E. (1999). Introduction to the special section on the structure of emotion. Journal of personality and Social Psychology, 76(5), 803.10.1037/0022-3514.76.5.803Search in Google Scholar

Dijkstra, T. M. H., Schöner, G., & Gielen, C. C. A. M. (1994). Temporal stability of the action-perception cycle for postural control in a moving visual environment. Experimental Brain Research, 97(3), 477-486.10.1007/BF002415428187859Search in Google Scholar

Dong, D., & Franklin, S. (2014). Sensory Motor System: Modeling the process of action execution. Paper presented at the Proceedings of the 36th Annual Conference of the Cognitive Science Society.Search in Google Scholar

Dong, D., & Franklin, S. (2015). A New Action Execution Module for the Learning Intelligent Distribution Agent (LIDA): The Sensory Motor System. Cognitive Computation. doi: 10.1007/s12559-015-9322-3.10.1007/s12559-015-9322-3Search in Google Scholar

Dorner, D., & Hille, K. (1995). Artificial souls: motivated emotional robots. Paper presented at the IEEE International Conference on Systems, Man and Cybernetics, Vancouver, BC, Canada.10.1109/ICSMC.1995.538385Search in Google Scholar

Drescher, Gary L. (1991). Made-Up Minds: A Constructivist Approach to Artificial Intelligence. Cambridge, MA: MIT Press.Search in Google Scholar

Ekman, P., Sorenson, E. R., & Friesen, W. V. (1969). Pan-cultural elements in facial displays of emotion. Science, 164(3875), 86-88.10.1126/science.164.3875.86Search in Google Scholar

Faghihi, U., McCall, R., & Franklin, S. (2012). A Computational Model of Attentional Learning in a Cognitive Agent. Biologically Inspired Cognitive Architectures, 2, 25-36.10.1016/j.bica.2012.07.003Search in Google Scholar

Faghihi, U., Estey, C., McCall, R., & Franklin, S. (2015). A Cognitive Model Fleshes Out Kahneman’s Fast and Slow Systems. Biologically Inspired Cognitive Architectures, 11, 38-52.10.1016/j.bica.2014.11.014Search in Google Scholar

Faghihi, U., Nkambou, R., Poirier, P., & Fournier-Viger, P. (2009). Emotional Learning and a Combined Centralist-Peripheralist Based Architecture for a More Efficient Cognitive Agent. Paper presented at the 7th IEEE International Conference on Industrial Technology (ICIT 2009).Search in Google Scholar

Fellous, J.-M. (2004). From human emotions to robot emotions. Architectures for Modeling Emotion: Cross-Disciplinary Foundations, American Association for Artificial Intelligence, 39-46.Search in Google Scholar

Fishbach, A., Roy, S. A., Bastianen, C., Miller, L. E., & Houk, J. C. (2005). Kinematic properties of on-line error corrections in the monkey. Experimental Brain Research, 164(4), 442–457.10.1007/s00221-005-2264-315940500Search in Google Scholar

Franklin, S. (1995). Artificial Minds. Cambridge, Ma: MIT Press.Search in Google Scholar

Franklin, S. (2000). Deliberation and Voluntary Action in ‘Conscious’ Software Agents. Neural Network World, 10, 505–521Search in Google Scholar

Franklin, S. (2003). IDA: A Conscious Artifact? Journal of Consciousness Studies, 10, 47–66.Search in Google Scholar

Franklin, S., & Baars, B. (2010). Two Varieties of Unconscious Processes. In E. Perry, D. Collerton, H. Ashton & F. LeBeau (Eds.), New Horizons in the Neuuroscience of Consciousness (pp. 91–102). Amsterdam: John Benjamin.10.1075/aicr.79.14fraSearch in Google Scholar

Franklin, S., Baars, B. J., Ramamurthy, U., & Ventura, M. (2005). The Role of Consciousness in Memory. Brains, Minds and Media, 1, 1–38.Search in Google Scholar

Franklin, S., & Graesser, A. C. (1997). Is it an Agent, or just a Program?: A Taxonomy for Autonomous Agents Intelligent Agents III (pp. 21–35). Berlin: Springer Verlag.10.1007/BFb0013570Search in Google Scholar

Franklin, S., Kelemen, A., & McCauley, L. (1998). IDA: A Cognitive Agent Architecture IEEE Conf on Systems, Man and Cybernetics (pp. 2646–2651). Menlo Park, CA: IEEE Press.Search in Google Scholar

Franklin, S., Madl, T., D’Mello, S., & Snaider, J. (2014). LIDA: A Systems-level Architecture for Cognition, Emotion, and Learning. IEEE Transactions on Autonomous Mental Development., PP(99), 1 doi: 10.1109/TAMD.2013.227758910.1109/TAMD.2013.2277589Search in Google Scholar

Franklin, S., Madl, T., Strain, S., Faghihi, U., Dong, D., Kugele, S., . . . Chen, S. (2016). A LIDA cognitive model tutorial. Biologically Inspired Cognitive Architectures, 105-130. doi: 10.1016/j.bica.2016.04.00310.1016/j.bica.2016.04.003Search in Google Scholar

Franklin, S., & Ramamurthy, U. (2006). Motivations, Values and Emotions: Three sides of the same coin Proceedings of the Sixth International Workshop on Epigenetic Robotics (Vol. 128, pp. 41–48). Paris, France: Lund University Cognitive Studies.Search in Google Scholar

Franklin, S., Strain, S., Snaider, J., McCall, R., & Faghihi, U. (2012). Global Workspace Theory, its LIDA model and the underlying neuroscience. Biologically Inspired Cognitive Architectures, 1, 32-43. doi: 10.1016/j.bica.2012.04.00110.1016/j.bica.2012.04.001Search in Google Scholar

Franklin, S., Strain, S., McCall, R., & Baars, B. (2013). Conceptual Commitments of the LIDA Model of Cognition. Journal of Artificial General Intelligence, 4(2), 1-22. doi:10.2478/jagi-2013-000210.2478/jagi-2013-0002Search in Google Scholar

Freeman, W. J. (2002). The limbic action-perception cycle controlling goal-directed animal behavior. Neural Networks, 3, 2249-2254.Search in Google Scholar

Fum, D., & Stocco, A. (2004). Memory, Emotion, and Rationality: An ACT-R interpretation for Gambling Task results. Paper presented at the ICCM.Search in Google Scholar

Fuster, J. M. (2004). Upper processing stages of the perception–action cycle. Trends in Cognitive Sciences, 8(4), 143-145.10.1016/j.tics.2004.02.00415551481Search in Google Scholar

Gallagher, M., McMahan, R. W., & Schoenbaum, G. (1999). Orbitofrontal cortex and representation of incentive value in associative learning. The Journal of neuroscience, 19(15), 6610-6614.10.1523/JNEUROSCI.19-15-06610.1999Search in Google Scholar

Gmytrasiewicz, P. J., & Lisetti, C. L. (2002). Emotions and personality in agent design and modeling Game theory and decision theory in agent-based systems (pp. 81-95): Springer.10.1007/978-1-4615-1107-6_5Search in Google Scholar

Hoffman, D. D., Singh, M., & Prakash, C. (2015). The interface theory of perception. Psychonomic bulletin & review, 22(6), 1480-1506.10.3758/s13423-015-0890-826384988Search in Google Scholar

Hollerman, J., & Schultz, W. (1998). Dopamine Neruons Report an Error in the Temproal Prediction of Reward during Learning. Nature Neuroscience, 1, 304-309.10.1038/112410195164Search in Google Scholar

Huys, Q. J., Eshel, N., O’Nions, E., Sheridan, L., Dayan, P., & Roiser, J. P. (2012). Bonsai trees in your head: how the Pavlovian system sculpts goal-directed choices by pruning decision trees. PLoS Comput Biol, 8(3), e1002410.10.1371/journal.pcbi.1002410329755522412360Search in Google Scholar

James, W. (1884). II.—What is an emotion? Mind(34), 188-205.10.1093/mind/os-IX.34.188Search in Google Scholar

James, W. (1890). The Principles of Psychology. Cambridge, MA: Harvard University Press.10.1037/10538-000Search in Google Scholar

Johnston, Victor S. (1999). Why We Feel:The Science of Human Emotions. Reading MA: Perseus Books.Search in Google Scholar

Kahneman, D. (2003). Maps of bounded rationality: Psychology for behavioral economics. The American economic review, 93(5), 1449-1475.10.1257/000282803322655392Search in Google Scholar

Kahneman, D. (2011). Thinking, Fast and Slow. New York: Farrar, Straus and Giroux.Search in Google Scholar

Kalis, A., Kaiser, S., & Mojzisch, A. (2013). Why we should talk about option generation in decision-making research. Front. Psychol, 4(555), 10.3389.10.3389/fpsyg.2013.00555Search in Google Scholar

Keller, L. R., & Ho, J. L. (1988). Decision problem structuring: Generating options. Systems, Man and Cybernetics, IEEE Transactions on, 18(5), 715-728.10.1109/21.21599Search in Google Scholar

Klein, G., Wolf, S., Militello, L., & Zsambok, C. (1995). Characteristics of skilled option generation in chess. Organizational Behavior and Human Decision Processes, 62(1), 63-69.10.1006/obhd.1995.1031Search in Google Scholar

Kringelbach, M. L., & Berridge, K. C. (2009). Towards a functional neuroanatomy of pleasure and happiness. Trends in cognitive sciences, 13(11), 479-487.10.1016/j.tics.2009.08.006Search in Google Scholar

Laird, John E., J, E., Newell, A., & Rosenbloom, Paul S. P. S. (1987). SOAR: An Architecture for General Intelligence. Artificial Intelligence, 33, 1–64.10.1016/0004-3702(87)90050-6Search in Google Scholar

Lang, P. J., & Davis, M. (2006). Emotion, motivation, and the brain: Reflex foundations in animal and human research. In G. E. M. J. J. K. S. Anders & D. Wildgruber (Eds.), Progress in Brain Research (Vol. Volume 156, pp. 3-29): Elsevier.10.1016/S0079-6123(06)56001-7Search in Google Scholar

Lazarus, R. (1991). Emotion and adaptation. New York: Oxford University Press.10.1093/oso/9780195069945.001.0001Search in Google Scholar

LeDoux, J. E. (2006). Emotional Memory: In Search of Systems and Synapsesa. Annals of the New York Academy of Sciences, 702(1), 149-157.10.1111/j.1749-6632.1993.tb17246.xSearch in Google Scholar

Lee-Johnson, C. P., & Carnegie, D. A. (2009). Robotic Emotions: Navigation with Feeling. In J. Vallverdú & D. Casacuberta (Eds.), Handbook of Research on Synthetic Emotions and Sociable Robotics (pp. 88-117): IGI Global.10.4018/978-1-60566-354-8.ch006Search in Google Scholar

Liddell, B. J., Brown, K. J., Kemp, A. H., Barton, M. J., Das, P., Peduto, A., . . . Williams, L. M. (2005). A direct brainstem–ìamygdala–cortical ‘alarm’ system for subliminal signals of fear. NeuroImage, 24(1), 235-243.10.1016/j.neuroimage.2004.08.01615588615Search in Google Scholar

Lucantonio, F., Stalnaker, T. A., Shaham, Y., Niv, Y., & Schoenbaum, G. (2012). The impact of orbitofrontal dysfunction on cocaine addiction. Nature Neuroscience, 15(3), 358-366.10.1038/nn.3014370125922267164Search in Google Scholar

MacDonald, K. (2008). Effortful Control, Explicit Processing and the Regulation of Human Evolved Predispositions. Psychological Review, 115(4), 012–1031.10.1037/a001332718954212Search in Google Scholar

Madl, T., Baars, B. J., & Franklin, S. (2011). The Timing of the Cognitive Cycle. PLoS ONE, 6(4), e14803.10.1371/journal.pone.0014803308180921541015Search in Google Scholar

Madl, T., & Franklin, S. (2012). A LIDA-based Model of the Attentional Blink. Proceedings of the 11th International Conference on Cognitive Modelling, 283-288.10.1037/e557102013-077Search in Google Scholar

Madl, T., Franklin, S., Chen, K., & Trappl, R. (2013). Spatial Working Memory in the LIDA Cognitive Architecture. In R. West & T. Stewart (Eds.), Proceedings of the 12th International Conference on Cognitive Modelling (pp. 384-390). Ottawa, Canada: Carleton University.Search in Google Scholar

Maes, P. (1989). How to do the right thing. Connection Science, 1, 291–323.10.1080/09540098908915643Search in Google Scholar

Marieb, E. N., & Hoehn, K. (2007). Human Anatomy & Physiology (Seventh ed.). San Francisco, CA: Pearson Benjamin Cummings.Search in Google Scholar

Marinier, R., & Laird, J. E. (2008). Emotion-driven reinforcement learning. Cognitive science, 115-120.Search in Google Scholar

Marinier, R. P., Laird, J. E., & Lewis, R. L. (2009). A computational unification of cognitive behavior and emotion. Cognitive Systems Research, 10(1), 48-69.10.1016/j.cogsys.2008.03.004Search in Google Scholar

McCall, R., Franklin, S., & Friedlander, D. (2010). Grounded Event-Based and Modal Representations for Objects, Relations, Beliefs, Etc. Paper presented at the FLAIRS-23, Daytona Beach, FL.Search in Google Scholar

McCall, R. J. (2014). Fundamental motivation and perception for a systems-level cognitive architecture. The University of Memphis.Search in Google Scholar

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & Petersen, S. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529.10.1038/nature14236Search in Google Scholar

Montague, P. R., Dayan, P., & Sejnowski, T. J. (1996). A framework for mesencephalic dopamine systems based on predictive Hebbian learning. The Journal of neuroscience, 16(5), 1936-1947.10.1523/JNEUROSCI.16-05-01936.1996Search in Google Scholar

Negatu, A. (2006). Cognitively Inspired Decision Making for Software Agents: Integrated Mechanisms for Action Selection, Expectation, Automatization and Non-Routine Problem Solving: Ph.D. Dissertation, The University of Memphis, Memphis TN USA.Search in Google Scholar

Neisser, U. (1976). Cognition and Reality: Principles and Implications of Cognitive Psychology San Francisco: W. H. Freeman.Search in Google Scholar

O’Doherty, J. P., Dayan, P., Friston, K., Critchley, H., & Dolan, R. J. (2003). Temporal difference models and reward-related learning in the human brain. Neuron, 38(2), 329-337.10.1016/S0896-6273(03)00169-7Search in Google Scholar

Pasquereau, B., Nadjar, A., Arkadir, D., Bezard, E., Goillandeau, M., Bioulac, B., . . . Boraud, T. (2007). Shaping of motor responses by incentive values through the basal ganglia. Journal of Neuroscience, 27, 1176-1183.10.1523/JNEUROSCI.3745-06.2007Search in Google Scholar

Phelps, E. A. (2006). Emotion and Cognition: Insights from Studies of the Human Amygdala. Annual Review of Psychology, 57(1), 27-53. doi: doi:10.1146/annurev.psych.56.091103.07023410.1146/annurev.psych.56.091103.070234Search in Google Scholar

Picard, R. (1997). Affective Computing. Cambridge MA: The MIT Press.10.1037/e526112012-054Search in Google Scholar

Picard, R. W. (2003). Affective computing: challenges. International Journal of Human-Computer Studies, 59(1–2), 55-64. doi: 10.1016/s1071-5819(03)00052-110.1016/S1071-5819(03)00052-1Search in Google Scholar

Purves, D., Brannon, E. M., Cabeza, R., Huettel, S. A., LaBar, K. S., Platt, M. L., & Woldorff, M. G. (2008). Principles of cognitive neuroscience (Vol. 83): Sinauer Associates Sunderland, MA.Search in Google Scholar

Raab, M., de Oliveira, R. F., & Heinen, T. (2009). How do people perceive and generate options? Progress in brain research, 174, 49-59.10.1016/S0079-6123(09)01305-3Search in Google Scholar

Richard, J. M., & Berridge, K. C. (2011). Nucleus accumbens dopamine/glutamate interaction switches modes to generate desire versus dread: D1 alone for appetitive eating but D1 and D2 together for fear. The Journal of neuroscience, 31(36), 12866-12879.10.1523/JNEUROSCI.1339-11.2011317448621900565Search in Google Scholar

Roseman, I. J., & Smith, C. A. (2001). Appraisal theory: Overview, assumptions, varieties, controversies Appraisal processes in emotion: Theory, methods, research (pp. 3-19). New York: Oxford University Press.10.1093/oso/9780195130072.003.0001Search in Google Scholar

Rowe, J., Hughes, L., Eckstein, D., & Owen, A. M. (2008). Rule-Selection and Action-Selection have a Shared Neuroanatomical Basis in the Human Prefrontal and Parietal Cortex. Cerebral Cortex, 18, 2275-2285. doi: 10.1093/cercor/bhm24910.1093/cercor/bhm249253669918234684Search in Google Scholar

Schoenbaum, G., Takahashi, Y., Liu, T. L., & McDannald, M. A. (2011). Does the orbitofrontal cortex signal value? Annals of the New York Academy of Sciences, 1239(1), 87-99.10.1111/j.1749-6632.2011.06210.x353040022145878Search in Google Scholar

Shin, Y. K., Proctor, R. W., & Capaldi, E. J. (2010). A review of contemporary ideomotor theory. Psychological Bulletin, 136(6), 943-974. doi: 10.1037/a002054110.1037/a002054120822210Search in Google Scholar

Sloman, A. (1998). Damasio, Descartes, Alarms and Meta-management Proceedings Symposiumon Cognitive Agents: Modeling Human Cognition. San Diego: IEEE.Search in Google Scholar

Sloman, A. (1999). What Sort of Architecture is Required for a Human-like Agent? In M. Wooldridge & A. S. Rao (Eds.), Foundations of Rational Agency (pp. 35–52). Dordrecht, Netherlands: Kluwer Academic Publishers.10.1007/978-94-015-9204-8_3Search in Google Scholar

Sloman, A., & Croucher, M. (1981). Why robots will have emotions.Search in Google Scholar

Smith, K. S., Berridge, K. C., & Aldridge, J. W. (2011). Disentangling pleasure from incentive salience and learning signals in brain reward circuitry. Proceedings of the National Academy of Sciences, 108(27), E255-E264.10.1073/pnas.1101920108313131421670308Search in Google Scholar

Snaider, J., McCall, R., & Franklin, S. (2011). The LIDA Framework as a General Tool for AGI. Paper presented at the Artificial General Intelligence (AGI-11), Mountain View, CA.10.1007/978-3-642-22887-2_14Search in Google Scholar

Squire, L. R., & Kandel, E. R. (2000). Memory: From mind to molecules: Macmillan.Search in Google Scholar

Sun, R. (2009). Motivational representations within a computational cognitive architecture. Cognitive Computation, 1(1), 91-103.10.1007/s12559-009-9005-zSearch in Google Scholar

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction. Cambridge, MA: MIT Press.10.1109/TNN.1998.712192Search in Google Scholar

Thompson, R. F., & Madigan, S. A. (2007). Memory. Princeton, NJ: Princeton University Press.Search in Google Scholar

Tindell, A. J., Smith, K. S., Berridge, K. C., & Aldridge, J. W. (2009). Dynamic computation of incentive salience: ‘wanting’ what was never ‘liked’. The Journal of Neuroscience, 29(39), 12220-12228.10.1523/JNEUROSCI.2499-09.2009279276519793980Search in Google Scholar

Toates, F. M. (1986). Motivational systems: CUP Archive.Search in Google Scholar

Ward, P., Suss, J., Eccles, D. W., Williams, A. M., & Harris, K. R. (2011). Skill-based differences in option generation in a complex task: A verbal protocol analysis. Cognitive processing, 12(3), 289-300.10.1007/s10339-011-0397-921461753Search in Google Scholar

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. Ph.D. thesis, Cambridge University.Search in Google Scholar

Westen, D. (1999). The Scientific Status of Unconscious Processes: Is Freud Really Dead? Journal of the American Psychoanalytic Association, 47(4), 1061-1106. doi: 10.1177/00030651990470040410.1177/00030651990470040410650551Search in Google Scholar

Wimmer, G. E., & Shohamy, D. (2012). Preference by Association: How Memory Mechanisms in the Hippocampus Bias Decisions. Science, 338(6104), 270-273. doi: 10.1126/science.122325210.1126/science.122325223066083Search in Google Scholar

Yerkes, R. M., & Dodson, J. D. (1908). The Relationship of Strength of Stimulus to Rapidity of Habit Formation. Journal of Comparative Neurology and Psychology, 18, 459–482.10.1002/cne.920180503Search in Google Scholar

Zacks, J. M., Speer, N. K., Swallow, K. M., Braver, T. S., & Reynolds, J. R. (2007). Event Perception: A Mind–Brain Perspective. Psychological Bulletin, 133(2), 273–293.10.1037/0033-2909.133.2.273285253417338600Search in Google Scholar

Zacks, J. M., & Tversky, B. (2001). Event structure in perception and conception. Psychological bulletin, 127(1), 3.10.1037/0033-2909.127.1.311271755Search in Google Scholar

eISSN:
1946-0163
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Computer Sciences, Artificial Intelligence