Accesso libero

Approved genetically modified (GM) horticultural plants: A 25-year perspective

INFORMAZIONI SU QUESTO ARTICOLO

Cita

ABCA, 2012. GM carnations in Australia: a resource guide. http://www.abca.com.au/wp-content/uploads/2012/09/ABCA_Resource_Guide_2_v2.pdf. Accessed 18 January 2018.Search in Google Scholar

ACBIO, 2013. GM industry called to account: ISAAA’s report mischievous and erroneous. African Centre for Biosafety. https://acbio.org.za/gm-industry-called-to-account-isaaas-report-mischievous-and-erroneous. Accessed 1 October 2017.Search in Google Scholar

AFCD, 2015. Review of the exemption of genetically modified papayas in Hong Kong. Discussion Paper GMO 04/2015. Agriculture, Fisheries and Conservation Department, Hong Kong. https://www.afcd.gov.hk/english/conservation/con_gmo/gmo_exp/files/Discussion_Paper_GMO_04_2015.pdf.pdf. Accessed 30 September 2017.Search in Google Scholar

AFCD, 2017. Report on the Survey of Genetically Modified Organisms in Hong Kong. Discussion Paper GMO 02/2017. Agriculture, Fisheries and Conservation Department, Hong Kong. https://www.afcd.gov.hk/english/conservation/con_gmo/gmo_exp/files/Discussion_Paper_GMO_04_2015.pdf.pdf. Accessed 23 March 2018.Search in Google Scholar

Alonso-Prados J.L., Fraile A., Garcia-Arenal F., 1997. Impact of Cucumber mosaic virus and Watermelon mosaic virus-2 infection on melon production in central Spain. J. Plant Pathol. 79(2), 131-134.Search in Google Scholar

AP, 2016. Hawaii counties can’t regulate GMOs and pesticides according to new ruling. The Associated Press November. 19 2016. http://fortune.com/2016/11/19/hawaii-gmo-pesticide-regulation. Accessed 1 October 2017.Search in Google Scholar

APHIS, 1992a. Petition for determination: Flavr Savr™ Tomato as non-regulated under CFR340 1992. USDA APHIS. https://www.aphis.usda.gov/brs/aphisdocs/92_19601p.pdf. Accessed 1 March 2018.Search in Google Scholar

APHIS, 1992b. Response to Calgene petition for determination of regulatory status. USDA A PH IS. https://www.aphis.usda.gov/brs/aphisdocs2/92_19601p_com.pdf. Accessed 1 March 2018.Search in Google Scholar

APHIS, 1992c. Petition for determination regulatory status of Cucurbita pepo L. cultivar YC77E ZW-20. USDA APHIS Petition No. 92-204-01p. https://www.aphis.usda.gov/brs/aphisdocs/92_20401p.pdf. Accessed 17 March 2018.Search in Google Scholar

APHIS, 1994a. Petition for release from regulation for modified lines B, Da, F derived from T7 varieties of processing tomato. USDA APHIS. https://www.aphis.usda.gov/brs/aphisdocs/94_29001p.pdf. Accessed 1 March 2018.Search in Google Scholar

APHIS, 1994b. Addition of one genetically engineered tomato line to determination of non-regulated status for Calgene, Inc. USDA APHIS. https://www.aphis.usda.gov/brs/aphisdocs2/94_22701p_com.pdf. Accessed 1 March 2018.Search in Google Scholar

APHIS, 1994c. Determination of nonregulated status for additional Calgene, Inc., genetically engineered FLAVR SAVR™ tomato lines. USDA APHIS Docket No. 94-125-1. https://www.aphis.usda.gov/brs/aphisdocs2/94_23001p_com.pdf. Accessed 1 March 2018.Search in Google Scholar

APHIS, 1994d. Petition for determination of nonregulated status: delayed-ripening tomato line 1345-4. USDA APHIS. https://www.aphis.usda.gov/brs/aphisdocs/94_22801p.pdf. Accessed 5 March 2018.Search in Google Scholar

APHIS, 1995a. Petition for determination of nonregulated status for additional Calgene, Inc., genetically engineered FLAVR SAVR™ tomato lines. USDA APHIS. https://www.aphis.usda.gov/brs/aphisdocs2/95_03001p_com.pdf. Accessed 1 March 2018.Search in Google Scholar

APHIS, 1995b. Addition of two genetically engineered tomato lines to determination of nonregulated status for Calgene, Inc. USDA APHIS Docket No. 95-068-1. https://www.aphis.usda.gov/brs/aphisdocs2/95_17901p_com.pdf. Accessed 1 March 2018.Search in Google Scholar

APHIS, 1995c. Availability of determination of nonregulated status for genetically engineered tomato lines. USDA APHIS Docket No. 95-016-2. Federal Register 60(121), 32650. https://www.aphis.usda.gov/brs/aphisdocs2/94_29001p_com.pdf. Accessed 1 March 2018.Search in Google Scholar

APHIS, 1995d. Petition for determination of nonregulated status: cherry tomatoes with S-adenosylmethionine hydrolase gene. USDA APHIS. https://www.aphis.usda.gov/brs/aphisdocs/95_32401p.pdf. Accessed 5 March 2018.Search in Google Scholar

APHIS, 1995e. Petition for determination of nonregulated status: tomatoes with delayed ripening gene. USDA APHIS. https://www.aphis.usda.gov/brs/aphisdocs/95_05301p.pdf 8338. Accessed 5 March 2018.Search in Google Scholar

APHIS, 1995f. Availability of determination of nonregulated status for genetically engineered tomato line of Monsanto company. USDA APHIS Docket No. 95-042-1. Federal Register 60(195), 52642. https://www.govinfo.gov/content/pkg/FR-1995-10-10/pdf/FR-1995-10-10.pdf. Accessed 6 March 2018.Search in Google Scholar

APHIS, 1995g. Response to DNA Plant Technology Corporation petition for determination of nonregulated status for tomato line 1345-4. USDA APHIS. https://www.aphis.usda.gov/brs/aphisdocs2/94_22801p_com.pdf. Accessed 6 March 2018.Search in Google Scholar

APHIS, 1995h. Petition for determination of nonregulated status: squash containing the coat protein genes from Cucumber Mosaic Virus (CMV), Watermelon Mosaic Virus 2 (WMV 2), and Zucchini Yellow Mosaic Virus (ZYMV). USDA APHIS Petition No. 95-352-01p. https://www.aphis.usda.gov/brs/aphisdocs/95_35201p.pdf. Accessed 17 March 2018.Search in Google Scholar

APHIS, 1995i. Availability of determination of nonregulated status for virus resistant squash. USDA APHIS Docket No. 92-127-4. Federal Register 59(238), 64187. https://www.aphis.usda.gov/brs/aphisdocs2/92_20401p_com.pdf. Accessed 17 March 2018.Search in Google Scholar

APHIS, 1996a. Calgene, Inc. Addition of one genetically engineered tomato line to determination of nonregulated status. USDA APHIS Docket No. 96-080-1. https://www.aphis.usda.gov/brs/aphisdocs2/96_24801p_com.pdf. Accessed 1 March 2018.Search in Google Scholar

APHIS, 1996b. Agritope, Inc. Availability of determination of nonregulated status for cherry tomato line genetically engineered for modified fruit ripening. USDA APHIS Docket No. 95-097-2. Federal Register 61(70), 15919. https://www.aphis.usda.gov/brs/aphisdocs2/95_32401p_com.pdf. Accessed 5 March 2018.Search in Google Scholar

APHIS, 1996c. Asgrow Seed Co. Availability of determination of nonregulated status for squash line genetically engineered for virus resistance. USDA APHIS Docket No. 96-002-2. Federal Register 61(125), 33484. https://www.aphis.usda.gov/brs/aphisdocs2/95_35201p_com.pdf. Accessed 17 March 2018.Search in Google Scholar

APHIS, 1996d. Petition for determination of regulatory status: transgenic papaya lines 55-1 and 63-1 and their derivatives. USDA APHIS Docket No. 96-024-1, Petition No. 96-051-01p. http://www.aphis.usda.gov/brs/aphisdocs/96_05101p.pdf. Accessed 26 March 2018.Search in Google Scholar

APHIS, 1996e. Corenell University and University of Hawaii; Availability of determination of nonregulated status for papaya lines genetically engineered for virus resistance. USDA APHIS Docket No. 96-024-2. Federal Register 61(180), 48663. http://www.aphis.usda.gov/brs/aphisdocs2/96_05101p_com.pdf. Accessed 30 September 2017.Search in Google Scholar

APHIS, 1997a. Petition for determination of non-regulated status for insect resistant tomato line 5345. USDA APHIS. https://www.aphis.usda.gov/brs/aphisdocs/97_28701p.pdf. Accessed 7 April 2018.Search in Google Scholar

APHIS, 1997b. Monsanto Co. Availability of determination of nonregulated status for tomato genetically engineered for insect resistance. USDA APHIS Docket No. 97-114-2. https://www.aphis.usda.gov/brs/aphisdocs2/97_28701p_com.pdf. Accessed 7 April 2018.Search in Google Scholar

APHIS, 1997c. Petition for determination of nonregulated status for radicchio rosso lines with male sterility (SEED LINK™). USDA APHIS. https://www.aphis.usda.gov/brs/aphisdocs/97_14801p.pdf. Accessed 8 March 2018.Search in Google Scholar

APHIS, 1997d. Bejo Zaden BV. Availability of determination of nonregulated status for genetically engineered radicchio rosso. USDA APHIS Docket No. 97-067-2. https://www.aphis.usda.gov/brs/aphisdocs2/97_14801p_com.pdf. Accessed 8 March 2018.Search in Google Scholar

APHIS, 1999. Agritope, Inc. Availability of environmental assessment for determination of nonregulated status. USDA APHIS Docket No. 99-003-2. Federal Register 64(206), 57625. http://en.biosafetyscanner.org/pdf/eventi/148_59700d5e6efd9b2f8c06fa4f63568f8f.pdf. Accessed 10 March 2018.Search in Google Scholar

APHIS, 2007a. Approval of USDA-ARS request (04-264-01P) seeking a determination of non-regulated status for C5 plum resistant to Plum Pox Virus. Finding of no significant impact and decision notice. USDA APHIS Combined documents. http://www.aphis.usda.gov/brs/aphisdocs2/04_26401p_com.pdf. Accessed 27 March 2018.Search in Google Scholar

APHIS, 2007b. University of Florida. Determination of nonregulated status for plum genetically engineered for resistance to Plum pox virus. USDA APHIS Docket No. APHIS-2008-0054. Federal Register 72(134), 38556. http://www.aphis.usda.gov/brs/fedregister/BRS_20090901.pdf. Accessed 27 March 2018.Search in Google Scholar

APHIS, 2008. Petition for nonregulated status for the X17-2 line of papaya: a Papaya ringspot virus – resistant papaya. USDA APHIS. http://www.aphis.usda.gov/brs/aphisdocs/04_33701p.pdf. Accessed 30 September 2017.Search in Google Scholar

APHIS, 2009a. Finding of no significant impact. Petition for nonregulated status for University of Florida X17-2 papaya. USDA APHIS. http://www.aphis.usda.gov/brs/aphisdocs2/04_33701p_com.pdf. Accessed 30 September 2017.Search in Google Scholar

APHIS, 2009b. University of Florida. Determination of nonregulated status for papaya genetically engineered for resistance to the Papaya ringspot virus. USDA APHIS Docket No. APHIS-2008-0054. Federal Register 74(168), 45163. http://www.aphis.usda.gov/brs/fedregister/BRS_20090901.pdf. Accessed 30 September 2017.Search in Google Scholar

APHIS, 2011a. Determination of nonregulated status for altered color roses. USDA APHIS Docket No. APHIS–2010–0040. Federal Register 76(189), 60447. https://www.aphis.usda.gov/brs/fedregister/BRS_20110929a.pdf. Accessed 18 January 2018.Search in Google Scholar

APHIS, 2011b. Petition (08-315-01p) for a determination of nonregulated status for Rosa x hybrida varieties IFD-524Ø1-4 and IFD-529Ø1-9 - ADDENDUM 1. USDA APHIS. https://www.aphis.usda.gov/brs/aphisdocs/08_31501p.pdf. Accessed 18 January 2018.Search in Google Scholar

APHIS, 2012. Petition for determination of nonregulated status: ArcticTM apple (Malus x domestica) events GD743 and GS784. USDA APHIS Docket No. APHIS-2012-0025, petition No. 10-161-01p. http://www.aphis.usda.gov/brs/aphisdocs/10_16101p.pdf. Accessed 24 September 2017.Search in Google Scholar

APHIS, 2014. Determination of nonregulated status for Okanagan Specialty Fruits’ GD743 and GS784 apples. USDA APHIS Docket No. APHIS-2012-0025. http://www.aphis.usda.gov/brs/aphisdocs/10_16101p_det.pdf. Accessed 24 September 2017.Search in Google Scholar

APHIS, 2015. Okanagan Specialty Fruits, Inc; Determination of nonregulated status of apples genetically engineered to resist browning. USDA APHIS Docket No. APHIS-2012-0025. Federal Register 80(32), 8589. https://www.regulations.gov/document?D=APHIS-2012-0025-6945. Accessed 24 September 2017.Search in Google Scholar

APHIS, 2016a. National environmental policy act decision and finding of no significant impact: Request for extension of determination of non-regulated status for non-browning Arctic® Fuji apple (16-004-01p). USDA APHIS Docket No. APHIS-2016-0043. https://www.aphis.usda.gov/brs/aphisdocs/16_00401p_fonsi.pdf. Accessed 24 September 2017.Search in Google Scholar

APHIS, 2016b. Response letter to the request for confirmation that transgene-free, CRISPR-edited mushroom is not a regulated article. USDA APHIS. https://www.aphis.usda.gov/biotechnology/downloads/reg_loi/15-321-01_air_response_signed.pdf. Accessed 4 April 2018.Search in Google Scholar

APHIS, 2017a. BRS list of varieties requiring import authorization. Updated 3 October 2017. USDA APHIS. https://www.aphis.usda.gov/biotechnology/downloads/petunia_varieties.pdf. Accessed 20 April 2018.Search in Google Scholar

APHIS, 2017b. Proposed rule. Importation, interstate movement, and environmental release of certain genetically engineered organisms. USDA APHIS Docket No. APHIS–2015–0057. Federal Register, 2017. 82(214), 7008. https://www.aphis.usda.gov/brs/fedregister/BRS_20171107.pdf. Accessed 4 April 2018.Search in Google Scholar

APHIS, 2017c. Proposed rule; withdrawal. Importation, interstate movement, and environmental release of certain genetically engineered organisms. USDA APHIS Docket No. APHIS–2015–0057. Federal Register, 2017. 82(12),51582. https://www.aphis.usda.gov/brs/fedregister/BRS_20170119.pdf. Accessed 26 March 2018.Search in Google Scholar

Aragao F.J.L., Faria J.C., 2009. First transgenic geminivirus-resistant plant in the field. Nat. Biotechnol. 27(12), 1086-1088.10.1038/nbt1209-1086Search in Google Scholar

Aragao F.J.L., Nogueira E.O.P.L., Tinoco M.L.P., Faria J.C., 2013. Molecular characterization of the first commercial transgenic common bean immune to the Bean golden mosaic virus. J. Biotechnol. 166(1-2), 42-50.10.1016/j.jbiotec.2013.04.009Search in Google Scholar

Armstrong J., Lane W.D., 2011. Genetically modified reduced-browning fruit-producing plant and produced fruit thereof, and method of obtaining such. US patent 8,563,805, application by Okanagan Specialty Fruits Inc., filled 26.02.2009, published 6.01.2011. https://www.lens.org/lens/patent/US_8563805_B2. Accessed 19 June 2018.Search in Google Scholar

Bakum J., 2015. Director of General of BARI remarks about BT brinjal. https://bteggplant.cornell.edu/content/blog/blog-tags/1. Accessed 8 April 2018.Search in Google Scholar

Bashandy H., Teeri T. H., 2017. Genetically engineered orange petunias on the market. Planta 246(2), 277-280.10.1007/s00425-017-2722-8Search in Google Scholar

Basso M.F., Lima J.A.A., Deguchi M., Galdeano D.M., Fernandes P.M.B., 2016. Papaya viral diseases: recent advances and perspectives. In: Urbano K.V. (ed.), Advances in Genetics Research 16, 135-150.Search in Google Scholar

BCH, 2012a. Modified organism CGN-89564-2 – FLAVR SAVR™ tomato. Biosafety Clearing-House. http://bch.cbd.int/database/record.shtml?documentid=14867. Accessed 1 March 2018.Search in Google Scholar

BCH, 2012b. Modified organism cantaloupe A (delayed ripening). Biosafety Clearing-House. http://bch.cbd.int/database/record.shtml?documentid=15388. Accessed 10 March 2018.Search in Google Scholar

BCH, 2012c. Modified organism Huafan No 1. Biosafety Clearing-House. http://www.isaaa.org/gmapprovaldatabase/event/default.asp?EventID=186. Accessed 2 June 2018.Search in Google Scholar

BCH, 2012d. Modified organism Da Dong No 9. Biosafety Clearing-House. http://www.isaaa.org/gmapprovaldatabase/event/default.asp?EventID=187. Accessed 2 June 2018.Search in Google Scholar

BCH, 2012e. Modified organism PK-TM8805R (8805R). Biosafety Clearing-House. http://www.isaaa.org/gmapprovaldatabase/event/default.asp?EventID=188. Accessed 2 June 2018.Search in Google Scholar

BCH, 2013a. Modified organism SYN0000B-6 – Tomato modified for delayed softening, Biosafety Clearing-House. http://bch.cbd.int/database/record.shtml?documentid=15405. Accessed 5 March 2018.Search in Google Scholar

BCH, 2013b. Modified organism SYN-000DA-9 – Tomato modified for delayed softening. Biosafety Clearing-House. http://bch.cbd.int/database/record.shtml?documentid=15406. Accessed 2 March 2018.Search in Google Scholar

BCH, 2013c. Modified organism SYN-0000F-1 – Tomato modified for delayed softening. Biosafety Clearing-House. http://bch.cbd.int/database/record.shtml?documentid=15407. Accessed 2 March 2018.Search in Google Scholar

BCH, 2014a. Modified organism tomato modified for delayed ripening 35-1-N. Biosafety Clearing-House. http://bch.cbd.int/database/record.shtml?documentid=15419. Accessed 5 March 2018.Search in Google Scholar

BCH, 2014b. Modified organism tomato modified for delayed ripening 1345-4. Biosafety Clearing-House. http://bch.cbd.int/database/record.shtml?documentid=15395. Accessed 5 March 2018.Search in Google Scholar

BCH, 2014c. CGN-89322-3 – Delayed-ripening tomato. Biosafety Clearing-House. http://bch.cbd.int/database/record.shtml?documentid=14781. Accessed 5 March 2018.Search in Google Scholar

BCH, 2014d. Notification of a transboundary movement of an LMO carried out in contravention of domestic measures to implement the Protocol (Article 25.3). Biosafety Clearing-House Japan country communication. http://bch.cbd.int/database/attachment/?id=14684. Accessed 30 September 2017.Search in Google Scholar

BCH, 2018a. Convention on Biological Diversity. Country's decision or any other communication. Biosafety Cleaning-House. http://bch.cbd.int/database/record.shtml?documentid=111644. Accessed 17 May 2017.Search in Google Scholar

BCH, 2018b. Convention on Biological Diversity. Risk assessment. Biosafety Cleaning-House. http://bch.cbd.int/database/record.shtml?documentid=111643. Accessed 17 May 2017.Search in Google Scholar

Bedbrook J.R., Howie W.J., Dunsmuir P., Lee K.Y., Joe L.K., 1997. Delayed ripening tomato plants. International Patent WO/1997/001952, application by DNA Plant Technology Corp., filled 28.06.1996, published 23.01.1997. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO1997001952. Accessed 19 June 2018.Search in Google Scholar

Biology discussion, 2016. Bt-brinjal: Production and its development; India. http://www.biologydiscussion.com/vegetable-breeding/bt-brinjal-production-andits-development-india/68749. Accessed 4 March 2018.Search in Google Scholar

BiosafetyScanner, 2018. Scheda evento 8805R e metodi di analisi. Fondazione Diritti Genetici. http://www.biosafetyscanner.org/schedaevento.php?radioeventi=radiobutton&evento=242&evento1=#tabs-1a. Accessed 2 June 2018.Search in Google Scholar

Bommineni V.R., Mathews H., Clendennen S.K., Wagoner W., Dewey V., Kellogg J., et al., 2000. Genetic engineering of fruits and vegetables with the ethylene control gene encoding S-adenosylmethionine hydrolase (SAMase) In: Plant Genetic Engineering: Towards the Third Millennium. A.D. Arenciba (ed.), Elsevier Science BV, 206-214.10.1016/S0168-7972(00)80033-XSearch in Google Scholar

Bonfim K., Faria J.C., Nogueira E.O.P.L., Mendes E.A., Aragao F.J.L., 2007. RNAi-mediated resistance to Bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Mol. Plant Microbe Interact. 20(6), 717-726.10.1094/MPMI-20-6-071717555279Search in Google Scholar

Brady C., MacAlpine G., McGlasson W.B., Ueda Y., 1982. Polygalacturonase in tomato fruit and the induction of ripening. Aust. J. Plant Physiol. 9, 171-178.10.1071/PP9820171Search in Google Scholar

Bruening G, Lyons J., 2000. The case of the FLAVR SAVR tomato. California Agriculture 54(4), 6-7.10.3733/ca.v054n04p6Search in Google Scholar

Brugliera F., Ta, G.Q., Tems U., Kalc G., Mouradova E., Price K., et al., 2013. Violet/blue chrysanthemums – metabolic engineering of the anthocyanin biosynthetic pathway results in novel petal colors. Plant Cell Physiol. 54(10), 1696-1710.10.1093/pcp/pct11023926066Search in Google Scholar

Cambra M., Capote N., Myrta A., Lla´cer G., 2006. Plum pox virus and the estimated costs associated with sharka disease. OEPP/EPPO Bull. 36(2), 202-204. 4210.1111/j.1365-2338.2006.01027.xSearch in Google Scholar

Carillo C.A., 2017. GM eggplant completes latest field trials. http://bworldonline.com/gm-eggplant-completes-latest-field-trials/. Accessed 8 April 2018.Search in Google Scholar

CERA, 1998. UK Competent Authority: Initial assessment report. Application number 98/UK/1. Report on the safety assessment of processed products from Zeneca’s genetically modified (GM) tomatoes derived from line TGT7F. http://cera-gmc.org/docs/decdocs/tgt7f_acnfp.pdf. Accessed 7 April 2018.Search in Google Scholar

CFIA, 2015. Decision document DD2015-110: Determination of the Safety of Okanagan Specialty Fruits Inc.'s apple (Malus domestica Borkh) events GD743 and GS784. CFIA. http://inspection.gc.ca/plants/plants-with-novel-traits/approved-under-review/decision-documents/dd2015-110/eng/1498237204300/1498237333410. Accessed 24 September 2017.Search in Google Scholar

Chen Z., Yang R., 1996. Method for cultivating tomato with function of anti virus of mosaic of cucumber by gene engineering. China patent CN 1054160, application by Beijing University, filled 4.07.1995, published 7.02.1996. https://patentscope.wipo.int/search/en/detail.jsf?docId=CN82309046&redirectedID=true. Accessed 19 June 2018.Search in Google Scholar

Choudhary B., Gaur K., 2009. The development and regulation of Bt brinjal in India (Eggplant/Aubergine). ISAAA Brief No.38. ISAAA: Ithaca, NY.Search in Google Scholar

COFEPRIS, 2018. Lista de evaluacion de inocuidad caso por caso de los organismos geneticamente modificados (OGMs). http://www.cofepris.gob.mx/AZ/Paginas/OGMS/Lista.aspx. Accessed 12 March 2018.Search in Google Scholar

COGEM, 2007. Advices import of genetically modified carnation ‘Moonaqua’. CGM/070206-02. https://www.cogem.net/showdownload.cfm?objectId=FFFE71E7-1517-64D9-CC1798C061035456&objectType=mark.apps.cogem.contentobjects.publication.download.pdf. Accessed 18 January 2018.Search in Google Scholar

COGEM, 2017. Unauthorised GM garden petunia varieties with orange flowers. COGEM advice CGM/170522-04. https://www.cogem.net/showdownload.cfm?objectId=3E808913-D0A9-773D-9CBDA6C4C03308B4&objectType=mark.hive.contentobjects.download.pdf. Accessed 20 April 2018.Search in Google Scholar

CTNBio, 2011. Commercial release of genetically modif ied beans. 3024/2011. http://ctnbio.mcti.gov.br/documents/566529/686051/Technical+Opinion+No.+3024-2011+-+Commercial+Release+of+genetically+modified+bean+resistant+to+Bean+Golden+Mosaic+Virus+-Bean+golden+mosaic+virus+-+BGMV-+event+Embrapa+5.1+-+Case+No.+01200.005161-2010-86/30b55a23-ed57-4e13-8232-bd59571252cc;jsessionid=17C34F55F92DF00F2D7CABD3A9D9E7BF.rima?version=1.0. Accessed 18 March 2018.Search in Google Scholar

Dahmani-Mardas F., Troadec C., Boualem A., Lévêque S., Alsadon A.A., Aldoss A.A., Bendahmane A., 2010. Engineering melon plants with improved fruit shelf life using the TILLING approach. PLoS ONE, 5(12), e15776.10.1371/journal.pone.0015776301270321209891Search in Google Scholar

Dai S., Zheng P., Marmey P., Zhang S., Tian W., Chen S., et al., 2001. Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol. Breed. 7(1), 25-33.Search in Google Scholar

Dale J., James A., Paul J.-Y., Khanna H., Smith M., Peraza-Echeverria S., et al., 2017. Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4. Nature Commun. 8(1), 1496.10.1038/s41467-017-01670-6568440429133817Search in Google Scholar

Dellanay X., LaVallee B.J., Proksch R.K., Fuchs R.L., Sims S.R., Greenplate J.T., et al., 1989. Field performance of transgenic tomato plants expressing the Bacillus thuringiensis var. kurstaki insect control protein. Nat. Biotechnol. 7, 1265-1269.10.1038/nbt1289-1265Search in Google Scholar

EC, 1996. 96/424/EC: Commission Decision of 20 May 1996 concerning the placing on the market of genetically modified male sterile chicory (Cichorium intybus L.) with partial tolerance to the herbicide glufosinate ammonium pursuant to Council Directive 90/220/EEC. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A31996D0424. Accessed 8 March 2018.Search in Google Scholar

EC, 1999. Opinion on a request for consent to place on the market a tomato fruit genetically modified to down-regulate the production of polygalacturonase (PG), and solely intended for processing. SCF/CS.NF/TOM/6 REV 4 final. https://ec.europa.eu/food/sites/food/files/safety/docs/sci-com_scf_out42_en.pdf. Accessed 23 March 2018.Search in Google Scholar

EC, 2007. 2007/364/EC, Commission decision of 23 May 2007 concerning the placing on the market, in accordance with Directive 2001/18/EC of the European Parliament and of the Council, of a carnation (Dianthus caryophyllus L., line 123.2.38) genetically modified for flower colour. Document C(2007)2120. Official Journal of the European Union L 138, 50-52. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:138:0050:0052:EN:PDF. Accessed 18 December 2017.Search in Google Scholar

EC, 2009. 2009/244/EC, Commission decision of 16 March 2009 concerning the placing on the market, in accordance with Directive 2001/18/EC of the European Parliament and of the Council, of a carnation (Dianthus caryophyllus L., line 123.8.12) genetically modified for flower colour. Document C(2009)1673. Official Journal of the European Union L 72, 18-20. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009D0244&rid=1. Accessed 18 December 2017.Search in Google Scholar

EC, 2015a. 2015/692, Commission implementing decision (EU) 2015/692 of 24 April 2015 concerning the placing on the market, in accordance with Directive 2001/18/EC of the European Parliament and of the Council, of a carnation (Dianthus caryophyllus L., line 25958) genetically modified for flower colour. Document C(2015)2765. Official Journal of the European Union L 112:44-47. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015D0692&from=EN. Accessed 18 December 2017.Search in Google Scholar

EC, 2015b. 2015/694, Commission Implementing Decision (EU) 2015/694 of 24 April 2015 concerning the placing on the market, in accordance with Directive 2001/18/EC of the European Parliament and of the Council, of a carnation (Dianthus caryophyllus L., line 26407) genetically modified for flower colour. Document C(2015)2768. Official Journal of the European Union L 112:52-55. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015D0694&from=EN. Accessed 18 December 2017.Search in Google Scholar

EC, 2016. 2016/2050, Commission Implementing Decision (EU) 2016/2050 of 22 November 2016 as regards the placing on the market of a genetically modified carnation (Dianthus caryophyllus L., line SHD-27531-4). Document C(2016)7443. Official Journal of the European Union L 318:13-16. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016D2050&from=EN. Accessed 18 December 2017.Search in Google Scholar

Elderidge S., 2003 Food biotechnology: Current issues and perspectives. Nova Science USA, 11.Search in Google Scholar

Embrapa, 2016. Bean cultivar BRS FC 401 RMD resistant to the Golden mosaic virus official statement. https://www.embrapa.br/en/esclarecimentos-oficiais/-/asset_publisher/TMQZKu1jxu5K/content/tema-cultivar-defeijao-resistente-ao-mosaico-dourado-brs-fc401-rmd. Accessed 15 March 2018.Search in Google Scholar

EPA, 2010. Coat protein gene of Plum pox virus. Biopesticides registration action document, PC Code: 006354. https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/decision_PC-006354_7-May-10.pdf. Accessed 24 September 2017.Search in Google Scholar

EPA, 2014. Notice of pesticide registration C5 HoneySweet Plum No. 11312-8. https://www3.epa.gov/pesticides/chem_search/ppls/011312-00008-20140930.pdf. Accessed 24 September 2017.Search in Google Scholar

EPA, 2016. Notice of pesticide registration X17-2 Papaya No. 84427-1. https://www3.epa.gov/pesticides/chem_search/ppls/084427-00001-20160112.pdf. Accessed 30 September 2017.Search in Google Scholar

European Court, 2018. Advocate General’s Opinion of 18 January 2018, Request for a preliminary ruling from the Council of State, France (C-528/16, ECLI:EU:C:2018:20).Search in Google Scholar

Evans E.A., Ballen F.H., Crane J.H., 2015. An overview of US papaya production, trade, and consumption. University of Florida IFAS Extension, FE914. http://edis.ifas.ufl.edu/fe914. Accessed 30 September 2017.Search in Google Scholar

FDA, 1992. Statement of policy – Foods derived from new plant varieties. Federal Register 57. Guidance to industry for food derived from new plant varieties. https://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/Biotechnology/ucm096095.htm. Accessed 3 March 2018.Search in Google Scholar

FDA, 1994. Agency Response Letter Re: FMF 526 and Docket No. 91A-0330. CFSAN/Office of Premarket Approval. http://wayback.archive-it.org/7993/20180124124721/https://www.fda.gov/Food/IngredientsPackagingLabeling/GEPlants/Submissions/ucm225027.htm. Accessed 3 March 2018.Search in Google Scholar

FDA, 1995a. Biotechnology Consultation Agency Response Letter BNF No. 000003. http://wayback.archive-it.org/7993/20171031095124/https://wayback.archive-it.org/7993/20171031095124. Accessed 15 March 2018Search in Google Scholar

FDA, 1995b. Biotechnology Consultation Agency Response Letter BNF No.000002. http://wayback.archive-it.org/7993/20171031095145/https://wayback.archive-it.org/7993/20171031095145. Accessed 5 March 2018.Search in Google Scholar

FDA, 1995c. Biotechnology Consultation Agency Response Letter BNF No. 000007. http://wayback.archive-it.org/7993/20171031095507/https://wayback.archive-it.org/7993/20171031095507. Accessed 6 March 2018.Search in Google Scholar

FDA, 1995d. Biotechnology Consultation Agency Response Letter BNF No. 000006. http://wayback.archive-it.org/7993/20171031095519/https://wayback.archive-it.org/7993/20171031095519. Accessed 17 March 2018Search in Google Scholar

FDA, 1996. Biotechnology Consultation Agency Response Letter BNF No. 000014. http://wayback.archive-it.org/7993/20171031095102/https://wayback.archive-it.org/7993/20171031095102. Accessed 15 March 2018.Search in Google Scholar

FDA, 1997a. Biotechnology Consultation Agency Response Letter BNF 000043. http://wayback.archive-it.org/7993/20171031093739/https://wayback.archive-it.org/7993/20171031093739. Accessed 17 March 2018.Search in Google Scholar

FDA, 1997b. Biotechnology Consultation Agency Response Letter BNF No. 000045. http://wayback.archive-it.org/7993/20171031093828/https://wayback.archive-it.org/7993/20171031093828. Accessed 8 March 2018.Search in Google Scholar

FDA, 1997c. Biotechnology Consultation Note to the File BNF No. 000042. FDA. http://wayback.archive-it.org/7993/20171031094445/https://wayback.archive-it.org/7993/20171031094445. Accessed 26 March. Accessed on 26 Mar 2018.Search in Google Scholar

FDA, 1998. Biotechnology Consultation Agency Response Letter BNF No. 000054. http://wayback.archive-it.org/7993/20171031093146/https://wayback.archive-it.org/7993/20171031093146. Accessed 7 April 2018.Search in Google Scholar

FDA, 1999a. Biotechnology Consultation Note to the File BNF No. 000060. http://wayback.archive-it.org/7993/20171031091240/https://wayback.archive-it.org/7993/20171031091240. Accessed 8 March 2018.Search in Google Scholar

FDA, 1999b. Biotechnology Consultation Agency Response Letter BNF No. 000060. http://wayback.archive-it.org/7993/20171031091310/https://wayback.archive-it.org/7993/20171031091310Accessed 8 March 2018.Search in Google Scholar

FDA, 2008. Biotechnology Consultation Note to the File BNF No. 000100. FDA. http://wayback.archive-it.org/7993/20171031090057/https://wayback.archive-it.org/7993/20171031090057. Accessed 26 March 2018.Search in Google Scholar

FDA, 2009. Biotechnology Consultation Agency Response Letter CFSAN/Office of Food Additive Safety. FDA, BNF No. 000101. http://wayback.archive-it.org/7993/20171031090404/https://wayback.archive-it.org/7993/20171031090404. Accessed 26 March 2018.Search in Google Scholar

FDA, 2015. Biotechnology Consultation Note to the File BNF No. 000132. FDA. http://wayback.archive-it.org/7993/20171031091552/https://wayback.archive-it.org/7993/20171031091552. Accessed 26 March. 2018.Search in Google Scholar

FDA, 2016. Biotechnology Consultation Agency Response Letter BNF No. 000149. FDA. https://www.fda.gov/Food/IngredientsPackagingLabeling/GEPlants/Submissions/ucm533372.htm. Accessed 24 September 2017.Search in Google Scholar

Ferreira S.A., Pitz K.Y., Manshardt R., Zee F., Fitch M., Gonsalves, D., 2002. Virus coat protein transgenic papaya provides practical control of Papaya ringspot virus in Hawaii. Plant Dis. 86(2), 101-105.10.1094/PDIS.2002.86.2.10130823304Search in Google Scholar

FFP, 2017. U.S.: Arctic Apple set for commercial launch following successful trials. FreshFruitPortal.com, 22 May 2017. https://www.freshfruitportal.com/news/2017/05/22/u-s-arctic-apple-set-commercial-launch-following-successful-trials. Accessed 24 September 2017.Search in Google Scholar

Fichtner F., Castellanos R., Ulker B., 2014. Precision genetic modifications: a new era in molecular biology and crop improvement. Planta 239(4), 921-939.10.1007/s00425-014-2029-y24510124Search in Google Scholar

Firoozbady E., Young Th.R., 2015. Pineapple plant named ‘rosé’. US plant patent PP25,763 P3, application by Del Monte Fresh Produce, filled 4.06.2012, published 4.08.2015. https://www.lens.org/lens/patent/197-779-624-196-993. Accessed 19 June 2018.Search in Google Scholar

Fischoff D.A., Bowdish K.S., Perlak F.J., Marrone P.G., McCornick S.M., Niedermeyer J.G., et al., 1987 Insect tolerant transgenic tomato plants. Biotechnol. 5, 807-813.10.1038/nbt0887-807Search in Google Scholar

Fitch M.M.M., Manshardt R.M., Gonsalves D., Slightom J.L., Sanford J.C., 1992. Virus resistant papaya derived from tissues bombarded with the coat protein gene of Papaya ringspot virus. BioTechnol. 10, 1466-1472.10.1038/nbt1192-1466Search in Google Scholar

GAIN, 2011. Japan approved GM papaya. GAIN Rep. No. JA1048. https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Japan%20approved%20GM%20papaya_Tokyo_Japan_12-19-2011.pdf. Accessed 30 September 2017.Search in Google Scholar

GAIN, 2014. Agricultural Biotechnology Annual. China. USDA Foreign Agricultural Service. GAIN Rep. No. 14032. https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Agricultural%20Biotechnology%20Annual_Beijing_China%20-%20Peoples%20Republic%20of_12-31-2014.pdf. Accessed 5 October 2017.Search in Google Scholar

GAIN, 2016a. Agricultural Biotechnology Annual. Bangladesh. USDA Foreign Agricultural Service. GAIN Rep. No. BG6010. https://gain.fas.usda.gov/RecentGAINPublications/Agricultural Biotechnology Annual_Dhaka_Bangladesh_11-21-2016.pdf. Accessed 23 March 2018.Search in Google Scholar

GAIN, 2016b. Agricultural Biotechnology Annual. Colombia remains open to new technologies. USDA Foreign Agricultural Service. GAIN Rep. 11/17/2016. https://gain.fas.usda.gov/RecentGAINPublications/Agricultural Biotechnology Annual_Bogota_Colombia_11-17-2016.pdf. Accessed 23 March 2018.Search in Google Scholar

GAIN, 2016c. Agricultural Biotechnology Annual. Costa Rica, Ministry of agriculture supported biotech moratorium. USDA Foreign Agricultural Service. GAIN Rep. 12/20/2016. https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Agricultural%20Biotechnology%20Annual_San%20Jose_Costa%20Rica_12-20-2016.pdf. Accessed 23 March 2018.Search in Google Scholar

GAIN, 2016d. Agricultural biotechnology annual: Japan. GAIN Rep. No. JA6050. https://gain.fas.usda.gov/Recent%20GAIN%20Publications/AGRICULTURAL%20BIOTECHNOLOGY%20ANNUAL_Tokyo_Japan_11-30-2016.pdf. Accessed 30 September 2017.Search in Google Scholar

Gocal, G., 2015. Non-transgenic trait development in crop plants using oligo-directed mutagenesis: Cibus’ Rapid Trait Development System. In: NABC Report 26. New DNA-Editing Approaches: Methods, Applications and Policy for Agriculture. North American Agricultural Biotechnology Council, Ithaca, NY, 97-105.Search in Google Scholar

Gonnet J-F, Fenet B., 2000. ‘Cyclamen red’ color based on a macrocyclic anthocyanin in carnation flowers. J. Agric. Food Chem. 48(1), 22-25.10.1021/jf990764210637045Search in Google Scholar

Gonsalves D., 2004. Transgenic papaya in Hawaii and beyond. AgBioForum 71, 36-40.Search in Google Scholar

Gonsalves D., Gonsalves C., Ferreira S., Pitz K., Fitch M., Manshardt R., Slightom J., 2004. Transgenic virus-resistant papaya: from hope to reality in controlling Papaya ringspot virus in Hawaii. APSnet Features. http://www.apsnet.org/publications/apsnetfeatures/Pages/PapayaRingspot.aspx. Accessed 30 September 2017.10.1094/APSnetFeature-2004-0704Search in Google Scholar

Green J.M., 2009. Evolution of glyphosate-resistant crop technology. Weed Sci. 57(1), 108-117.10.1614/WS-08-030.1Search in Google Scholar

Griesbach R.J., 1993. Characterization of the flavonoids from Petunia× hybrida flowers expressing the A1 gene of Zea mays. HortScience, 28(6), 659-660.10.21273/HORTSCI.28.6.659Search in Google Scholar

Griesbach R.J., 2007. Petunia. In: Flower Breeding and Genetics. N.O. Anderson (ed.), Springer, Dordrecht, 301-336.10.1007/978-1-4020-4428-1_11Search in Google Scholar

HC, 1995a. Suppressed polygalacturonase activity Flavr Savr™ tomato. Health Canada. https://www.canada.ca/en/health-canada/services/food-nutrition/genetically-modified-foods-other-novel-foods/approved-products/suppressed-polygalacturonase-activity-flavr-savr-tomato.html. Accessed 2 March 2018.Search in Google Scholar

HC, 1995b. Delayed ripening tomato line 1345-4. Health Canada. https://www.canada.ca/en/health-canada/services/food-nutrition/genetically-modified-foods-other-novel-foods/approved-products/delayed-ripening-tomato-line-1345-4.html. Accessed 5 March 2018.Search in Google Scholar

HC, 1996. Suppressed polygalacturonase activity tomato hybrids, 1401F, H282F, 11013F, 7913F. Health Canada. https://www.canada.ca/en/health-canada/services/food-nutrition/genetically-modified-foods-other-novel-foods/approved-products/suppressed-polygalacturonase-activity-tomato-hybrids-1401fh282f-11013f-7913f.html. Accessed 30 March 2018.Search in Google Scholar

HC, 1998a. Virus resistant squash line ZW-20. Health Canada. https://www.canada.ca/en/health-canada/services/food-nutrition/genetically-modified-foods-other-novel-foods/approved-products/virus-resistant-squash-line-20.html. Accessed 17 March 2018.Search in Google Scholar

HC, 1998b. Virus resistant squash line CZW-3. Health Canada. https://www.canada.ca/en/health-canada/services/food-nutrition/genetically-modified-foods-other-novel-foods/approved-products/virus-resistant-squash-line-czw-3.html. Accessed 17 March 2018.Search in Google Scholar

HC, 2000. Insect (lepidopteran species) resistant tomato 5345. Health Canada. https://www.canada.ca/en/health-canada/services/food-nutrition/genetically-modified-foods-other-novel-foods/approved-products/insect-lepidopteran-species-resistant-tomato-line-5345.html. Accessed 7 April 2018.Search in Google Scholar

HC, 2003. Novel food information – Food biotechnology. Human food use of virus resistant papaya line 55-1. Health Canada. http://cera-gmc.org/files/cera/GmCropDatabase/docs/decdocs/03-065-001.pdf. Accessed 30 September 2017.Search in Google Scholar

HC, 2013. Determination of the safety of Cibus Canada Inc.'s canola (Brassica napus L.) event 5715. DD 2013-100. Health Canada. http://inspection.gc.ca/plants/plants-with-novel-traits/approved-under-review/decision-documents/dd-2013-100/eng/1427383332253/1427383674669. Accessed 5 April 2018.Search in Google Scholar

HC, 2015. Novel food information – Arctic apple events GD743 and GS784. Health Canada. https://www.canada.ca/en/health-canada/services/food-nutrition/genetically-modified-foods-other-novel-foods/approved-products/novel-food-information-arctic-apple-events-gd743-gs784.html. Accessed 24 September 2017.Search in Google Scholar

HC, 2018. Novel food information – Arctic apple event NF872. Health Canada. https://www.canada.ca/en/health-canada/services/food-nutrition/genetically-modified-foods-other-novel-foods/approved-products/arctic-fuji-apple/information.html. Accessed 5 April 2018.Search in Google Scholar

Hobson G.E., 1965. The firmness of tomato fruit in relation to polygalacturonase activity. J. Hort. Sci. 40, 66-72.10.1080/00221589.1965.11514121Search in Google Scholar

Holton T.A., 1996. Transgenic plants exhibiting altered flower color and methods for producing same. International Patent WO/1996/036716, applied by International Flower Developments Pty. Ltd., filled 16.05.1996, published 21.11.1996. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO1996036716. Accessed 19 June 2018.Search in Google Scholar

IATP, 2001. GM food crops and application of substantial equivalence in the European Union. https://www.iatp.org/files/GM_Food_Crops_and_Application_of_Substantial_E.htm. Accessed 7 April 2018.Search in Google Scholar

ICA, 2000. Por la cual se autoriza la introducción de plantas de clavel modificado genéticamente. Resolucion No. 1219 (18 MAY 2000). http://bch.cbd.int/database/attachment/?id=14170. Accessed 18 January 2018.Search in Google Scholar

ICA, 2008. Por la cual se autoriza la importación del material reproductivo de claveles modificados por las técnicas de ingeniería genética para producción de flor cortada para exportación. Resolucion No. 3932 (20 NOVEMBER 2008). https://www.ica.gov.co/getattachment/978557f9-da42-4f80-85f6-947b27f67a25/2008R3932.aspx. Accessed 18 January 2018.Search in Google Scholar

ICA, 2009. Resolución 3786: Por la cual se autoriza adelantar siembra experimental en invernadero de Rosas Modificadas. Genéticamente para el color de la flor mediante el Vector binario pSPB130 para produccion de flor cortada para exportacion. https://www.ica.gov.co/getattachment/37101b43-3129-4008-b448-2bda8e762027/3857.aspx. Accessed 18 January 2018.Search in Google Scholar

ICA, 2012. Resolución 3570: Por la cual se autoriza la importación del material reproductivo de Crisantemo de flor azul, modificados con los vectores de Transformación pCGP3618, pCGP3633 y pCGP3641, para producción de flor cortada para exportación. https://www.ica.gov.co/getattachment/37101b43-3129-4008-b448-2bda8e762027/3857.aspx. Accessed 18 January 2018.Search in Google Scholar

ILSI, 2011. A review of the environmental safety of the Cry1Ac protein. International Life Sciences Institute Research Foundation. Environ. Biosafety Res. 10, 27-49.10.1051/ebr/2012002Search in Google Scholar

ISAAA, 2009. Pocket K No. 35: Bt brinjal in India. http://isaaa.org/resources/publications/pocketk/35/default.asp. Accessed 4 March 2018.Search in Google Scholar

ISAAA, 2015. Brief 51: Executive Summary. http://www.isaaa.org/resources/publications/briefs/51/executivesummary/default.asp. Accessed 4 March 2018.Search in Google Scholar

ISAAA, 2016a. Global status of commercialized biotech/GM crops: 2016. ISAAA Brief 52, ISAAA, Ithaca, New York, USA.Search in Google Scholar

ISAAA, 2016b. Pocket K. No. 48: Bt eggplant. http://www.isaaa.org/resources/publications/pocketk/48/default.asp. Accessed 4 March 2018.Search in Google Scholar

ISAAA, 2017. ISAAA donor support group. http://www.isaaa.org/inbrief/donors/default.asp. Accessed 4 October 2017.Search in Google Scholar

James C., 2014. Global status of commercialized biotech/GM crops: 2014. ISAAA Brief 49, ISAAA, Ithaca, New York, USA.Search in Google Scholar

JCH, 2004a. Purple-violet carnation 123.8.8 (F3'5'H, DFR, Dianthus caryophyllus L.) (OECD UI: FLO-40685-1). Japan Clearing House. http://www.biodic.go.jp/bch/download/en_lmo/FLO40685enRi.pdf. Accessed 18 December 2017.Search in Google Scholar

JCH, 2004b. Purple-violet carnation 123.2.38 (F3'5'H, DFR, Dianthus caryophyllus L.) (OECD UI: FLO-40644-4) Japan Clearing House. http://www.biodic.go.jp/bch/download/en_lmo/FLO40644enRi.pdf. Accessed 18 December 2017.Search in Google Scholar

JCH, 2004c. Purple-violet carnation 11363 (F3'5'H, DFR, Dianthus caryophyllus L.) (OECD UI: FLO-11363-1). Japan Clearing House. http://www.biodic.go.jp/bch/download/en_lmo/FLO11363enRi.pdf. Accessed 18 December 2017.Search in Google Scholar

JCH, 2004d. Purple-violet carnation 11 (F3'5'H, DFR, Dianthus caryophyllus L.) (OECD UI: FLO-07442-4). Japan Clearing House. http://www.biodic.go.jp/bch/download/en_lmo/FLO07442enRi.pdf. Accessed 18 December 2017.Search in Google Scholar

JCH, 2008a. Rose Variety with modified flavonoid biosynthesis pathway (F3'5'H, 5AT, Rosa hybrida) (WKS82/130-4-1, ECD UI: IFD-52401-4). Japan Clearing House. http://www.biodic.go.jp/bch/download/en_lmo/130_4_1_2008enRi.pdf. Accessed 18 December 2017.Search in Google Scholar

JCH, 2008b. Rose Variety with modified flavonoid biosynthesis pathway (F3'5'H, 5AT, Rosa hybrida) (WKS82/130-9-1, OECD UI: IFD-52901-9). Japan Clearing House. http://www.biodic.go.jp/bch/download/en_lmo/130_9_1_2008enRi.pdf. Accessed 18 December 2017.Search in Google Scholar

JCH, 2009. Purple-violet carnation (F3′5′H, DFR, sur B, Dianthus caryophyllus L.) (123.8.12, OECD UI: FLO-40689-6). Japan Clearing House. http://www.biodic.go.jp/bch/download/en_lmo/FLO40689enRi.pdf. Accessed 18 December 2017.Search in Google Scholar

JRC EU, 2007. Report on the testing of a PCR-based detection method for identification of Florigene™ Moonlite GM carnation. Protocol Version 2. http://gmoinfo.jrc.ec.europa.eu/docs/C-NL-04-02%20CRL%20method.pdf. Accessed on 24 April 2018.Search in Google Scholar

Kato K., Yoshida R., Kikuzaki A., Hirai T., Kuroda H., Hiwasa-Tanase K., et al., 2010. Molecular breeding of tomato lines for mass production of miraculin in a plant factory. J. Agric. Food Chem. 58, 9505-9510.10.1021/jf101874b20695489Search in Google Scholar

Katsumoto Y., Fukuchi-Mizutani M., Fukui Y., Brugliera F., Holton T.A., Karan M., et al., 2007. Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol. 48(11), 1589-1600.10.1093/pcp/pcm13117925311Search in Google Scholar

Keeler S.J., Sanders P., Smith J.K., Mazur B.J., 1993. Regulation of tobacco acetolactate synthase gene expression. Plant Physiol. 102(3), 1009-1018.10.1104/pp.102.3.10091588758278521Search in Google Scholar

Kitagawa M., Nakamura K., Kondo K., Ubukata S., Akiyama H., 2014. Examination of processed vegetable foods for the presence of common DNA sequences of genetically modified tomatoes. J. Food Hyg. Saf. Sci. 55(5), 247-253.10.3358/shokueishi.55.24725743587Search in Google Scholar

Kyodo, 2011. Suntory to sell blue roses overseas. The Japan Times 16 September 2011. https://www.japantimes.co.jp/news/2011/09/16/news/suntory-to-sell-blue-roses-overseas. Accessed 22 April 2018.Search in Google Scholar

Lisa V., Lecoq H., 1984. Zucchini yellow mosaic virus. CMI/AAB Descriptions of plant viruses, no. 282.Search in Google Scholar

Lu C., Chandler S.F., Mason J.G., Brugliera F., 2003. Florigene flowers: from laboratory to market. In: Plant Biotechnology 2002 and Beyond. I.K. Vasil (ed.), Springer, Dordrecht, 333-336.10.1007/978-94-017-2679-5_69Search in Google Scholar

Luis-Arteaga M., Alvarez J.M., Alonso-Prados J.L., Bernal J.J., García-Arenal F., Lavina A., et al., 1998. Occurrence, distribution, and relative incidence of mosaic viruses infecting field-grown melon in Spain. Plant Dis. 82, 979-982.10.1094/PDIS.1998.82.9.97930856849Search in Google Scholar

Mallah N., Obeid M., Sleymane G.A., 2017. Comprehensive matrices for regulatory approvals and genetic characterization of genetically modified organisms. Food Control 80, 52-58.10.1016/j.foodcont.2017.03.053Search in Google Scholar

Meyer P., Heidmann I., 1994. Epigenetic variants of a transgenic petunia line show hypermethylation in transgene DNA: an indication for specific recognition of foreign DNA in transgenic plants. Mol. Gen. Genet. 243(4), 390-399.10.1007/BF00280469Search in Google Scholar

Meyer P., Heidmann I., Forkmann G., Saedler H., 1987. A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330(6149), 677-678.Search in Google Scholar

Meyer P., Heidmann I., Saedler H., Forkmann G., 1995. Plants with modified flower color and methods for their production by genetic engineering. US patent 5,410,096, application by the inventors, filled 28.08.1990, published 25.04.1995. https://patentscope.wipo.int/search/en/detail.jsf?docId=US38462462. Accessed 19 June 2018.Search in Google Scholar

MOEF, 2010. Decision on commercialisation of Btbrinjal. http://www.moef.nic.in/downloads/public-information/minister_REPORT.pdf. Accessed 28 March 2018.Search in Google Scholar

Nakamura N., 2010. Dream comes true: development of a blue rose‘Applause’ and its fragrance. J. Jpn. Assoc. Odor. Environ. 41(3), 150-156.10.2171/jao.41.150Search in Google Scholar

Nakamura N., Fukuchi-Mizutani M., Katsumoto Y., Togami J., Senior M., Matsuda Y., et al., 2011. Environmental risk assessment and field performance of rose (Rosa×hybrida) genetically modified for delphinidin production. Plant Biotechnol. 28(2), 251-261.10.5511/plantbiotechnology.11.0113aSearch in Google Scholar

Nakayama T., Suzuki H., Nishino T., 2003. Anthocyanin acyltransferases: specificities, mechanism, phylogenetics, and applications. J. Mol. Catalysis B: Enzymatic, 23(2-6), 117-132.10.1016/S1381-1177(03)00078-XSearch in Google Scholar

Nap J.P., Metz P.L., Escaler M., Conner A.J., 2003. The release of genetically modified crops into the environment. Part I. Overview of current status and regulations. Plant J. 33(1), 1-18.10.1046/j.0960-7412.2003.01602.xSearch in Google Scholar

NBB, 2012. Application for approval for commercial import of cut flowers of novel flower colour varieties of genetically modified carnation (Dianthus caryophyllus L.). The National Biosafety Board REF. NO: JBK(S) 602-1/1/8. http://www.biosafety.nre.gov.my/country_decision/product_lmo/jbk(s)%20602-1-1-8/Decision%20Statement%20of%20GM%20Carnation.pdf. Accessed 18 January 2018.Search in Google Scholar

Noda N., Aida R., Kishimoto S., Ishiguro K., Fukuchi-Mizutani M., Tanaka Y., Ohmiya A., 2013. Genetic engineering of novel bluer-colored chrysanthemums produced by accumulation of delphinidin-based anthocyanins. Plant Cell Physiol. 54(10), 1684-1695.10.1093/pcp/pct111Search in Google Scholar

Noda N., Tanaka Y., 2013. Violet-blue chrysanthemums. Oxford University Press’s Blog 21 November 2013. https://blog.oup.com/2013/11/violet-blue-chrysanthemum-genetic-modification. Accessed 21 January 2018.Search in Google Scholar

Noda N., Yoshioka S., Kishimoto S., Nakayama M., Douzono M., Tanaka Y., Aida R., 2017. Generation of blue chrysanthemums by anthocyanin B-ring hydroxylation and glucosylation and its coloration mechanism. Sci. Adv. 3(7), e1602785.10.1126/sciadv.1602785Search in Google Scholar

OECD, 2002.Guidance for the designation of a unique identifier for transgenic plants. OECD. http://www.oecd.org/officialdocuments/displaydocument/?doclanguage=en&cote=env/jm/mono(2002)7. Accessed 3 October 2017.Search in Google Scholar

OGTR, 2003a. Commercial release of colour modified carnation – replacement of deemed licence GR- 2. Licence No.: DIR 030/2002. http://ogtr.gov.au/internet/ogtr/publishing.nsf/Content/dir030-3/$FILE/dir030lic.pdf Accessed on 18 January 2018.Search in Google Scholar

OGTR, 2003b. Risk assessment and risk management plan. Commercial release of colour modified carnation – replacement of deemed licence GR-2. DIR 030/2002. http://content.webarchive.nla.gov.au/gov/wayback/20130904044522/http://www.ogtr.gov.au/internet/ogtr/publishing.nsf/Content/dir030-3/$FILE/dir030finalrarmp.pdf. Accessed 22 April 2018.Search in Google Scholar

OGTR, 2007. Notification that dealings with genetically modified carnation lines have been included on the GMO register. http://www.ogtr.gov.au/internet/ogtr/publishing.nsf/Content/reg001det1-htm. Accessed 22 April 2018.Search in Google Scholar

OGTR, 2009. Licence for dealings involving an intentional release of a GMO into the environment: Commercial release of rose genetically modified for altered flower colour. Licence No. DIR 090. http://ogtr.gov.au/internet/ogtr/publishing.nsf/Content/dir090-3/$FILE/dir090lic.pdf. Accessed 18 January 2018.Search in Google Scholar

OGTR, 2015a. Commercial import and distribution of GM carnation cut-flowers with altered flower colour. Licence No.: DIR 134. http://www.ogtr.gov.au/internet/ogtr/publishing.nsf/Content/dir134/$FILE/Licence%20conditions.pdf. Accessed 18 January 2018.Search in Google Scholar

OGTR, 2015b. Risk assessment and risk management plan for DIR 134. Commercial import and distribution of GM carnation cut-flowers with altered flower colour. http://www.ogtr.gov.au/internet/ogtr/publishing.nsf/Content/dir134/$FILE/Full%20Risk%20Assessment%20and%20Risk%20Management%20Plan.pdf. Accessed 18 January 2018.Search in Google Scholar

OGTR, 2017. Licence for dealings involving an intentional release of a GMO into the environment. Licence No.: DIR 109. http://www.ogtr.gov.au/internet/ogtr/publishing.nsf/Content/76F9A6576471A5D0CA257CD1000D2AB3/$File/Licence%20Conditions.pdf. Accessed 9 April 2018.Search in Google Scholar

PFSEH, 2017. Labelling system for genetically modified food and proposed introduction of pre-market safety assessment scheme. Hong Kong Legislative Council paper No. CB(2)1809/16-17(01). https://www.legco.gov.hk/yr16-17/english/panels/fseh/papers/fseh20170711cb2-1809-1-e.pdf. Accessed 23 March 2018.Search in Google Scholar

Polak J., Kundu J.K., Krska B., Beoni E., Kominek P., Pivalova J., Jarosova J., 2017. Transgenic plum Prunus domestica L., clone C5 (cv. HoneySweet) for protection against sharka disease. J. Integr. Agric. 16(3), 516-522.10.1016/S2095-3119(16)61491-0Search in Google Scholar

Puette L., 2016. The splice must grow: The bright and shady sides of GM agriculture in China. Market Reports 6. http://www.chinaag.org/markets/gm-agriculture-in-china. Accessed 30 September 2017.Search in Google Scholar

Raghavan V., Malik P.S., Choudhury N.R., Mukherjee S.K., 2004. The DNA-A Component of a plant geminivirus (Indian Mung Bean Yellow Mosaic Virus) replicates in budding yeast cells. J. Virology 78(5), 2405-2413.10.1128/JVI.78.5.2405-2413.200436923814963136Search in Google Scholar

Rappler, 2016. SC reverses earlier roling on Bt talong, GMOs. https://www.rappler.com/science-nature/environment/141043-sc-reverses-ruling-bt-talonggmo. Accessed 8 April 2018.Search in Google Scholar

Reed A.J. Magin K.M., Anderson J.S., Austin G.D., Rangwala T., Linde D.C., et al., 1995. Delayed ripening tomato plants expressing the enzyme 1-aminocyclopropane-1-carboxylic acid deaminase. 1. Molecular characterization, enzyme expression, and fruit ripening traits. J. Agric. Food Chem. 43(7), 1954-1962.10.1021/jf00055a036Search in Google Scholar

Rimbaud L., Dallot S., Gottwald T., Decroocq V., Jacquot E., Soubeyrand S., Thébaud G., 2015. Sharka epidemiology and worldwide management strategies: learning lessons to optimize disease control in perennial plants. Ann. Rev. Phytopathol. 53(1), 357-378.10.1146/annurev-phyto-080614-12014026047559Search in Google Scholar

Savin K.W., Baudinette S.C., Graham M.W., Michael M.Z., Nugent G.D., Lu C.Y., Cornish, E.C., 1995. Antisense ACC oxidase RNA delays carnation petal senescence. HortScience, 30(5), 970-972.10.21273/HORTSCI.30.5.970Search in Google Scholar

Schuttelaar, 2015. The regulatory status of New Breeding Techniques in countries outside the European Union. Schuttelaar & Partners. Version: June 2015. http://www.nbtplatform.org/background-documents/rep-regulatory-status-of-nbts-oustide-theeu-june-2015.pdf. Accessed 4 April 2018.Search in Google Scholar

Scorza R., 2006. Application for determination of non-regulatory status for C5 (‘HoneySweet’) plum (Prunus domestica L.) resistant to Plum pox virus. Identifier: ARS-PLMC5-6. http://cera-gmc.org/docs/decdocs/07-313-003.pdf. Accessed 25 March 2018.Search in Google Scholar

Scorza R., Callahan A., Dardick Ch., Ravelonandro M., Polak J., Malinowski T., et al., 2013. Genetic engineering of Plum pox virus resistance: ‘HoneySweet’ plum – from concept to product. Plant Cell Tiss. Org. Cult. 115(1), 1-12.10.1007/s11240-013-0339-6Search in Google Scholar

Scorza R., Ravelonandro M., Gonsalves D., 2004. Plum tree named ‘honeysweet’. US plant patent PP15,154 P2, application by US Institut National de la Recherche Agronomique and Cornell Research Foundation, Inc., filled 31.08.2001, published 21.09.2004. https://www.lens.org/lens/patent/076-366-849-381-273. Accessed 19 June 2018.Search in Google Scholar

Scorza R., Ravelonandro M., Callahan A., Zagrai I., Polak J., Malinowski T., et al., 2016. ‘HoneySweet’ (C5), the first genetically engineered Plum pox virus–resistant plum (Prunus domestica L.) cultivar. HortScience 51(5), 601-603.10.21273/HORTSCI.51.5.601Search in Google Scholar

SEARCA, 2017. Bangladesh to release 3 more Bt brinjal varieties. http://bic.searca.org/site/bangladesh-to-release-3-more-bt-brinjal-varieties/. Accessed 8 April 2018.Search in Google Scholar

Servick K., 2017a. How the transgenic petunia carnage of 2017. American Association for the Advancement of Science, Science news, Engineering Plants & Animals Science and Policy May 24, 2017. http://www.sciencemag.org/news/2017/05/how-transgenicpetunia-carnage-2017-began. Accessed 1 February 2018.10.1126/science.aan6886Search in Google Scholar

Servick K., 2017b. The strange case of the orange petunias. Science 356(6340), 792.10.1126/science.356.6340.79228546164Search in Google Scholar

Siddique A., 2017. Bangladesh to provide incentives for farmers to grow more GMO Bt eggplant. https://geneticliteracyproject.org/2017/10/24/bangladesh-to-provide-incentives-farmers-grow-more-gmo-bt-eggplant/#.WfBXtio81sc.twitter. Accessed 28 March 2018.Search in Google Scholar

Smart R.D., Blum M., Wesseler J., 2017. Trends in approval times for genetically engineered crops in the United States and the European Union. J. Agric. Econ. 68(1), 182-198.10.1111/1477-9552.12171Search in Google Scholar

Songstad D., Petolino J., Voytas D., Reichert N., 2017. Genome editing of plants. Critical Rev. Plant Sci. 36(1), 1-23.10.1080/07352689.2017.1281663Search in Google Scholar

Sparks B., 2018. Suntory blue rose‘Applause’ takes center stage on Grammy's Red Carpet. Greenhouse Grower 27 February 2018. http://www.greenhousegrower.com/varieties/suntory-blue-rose-applause-takes-center-stage-on-grammys-red-carpet. Accessed 23 April 2018.Search in Google Scholar

Sprink T., Eriksson D., Schiemann J., Hartung F., 2016. Regulatory hurdles for genome editing: process-vs. product-based approaches in different regulatory contexts. Plant Cell Rep. 35(7), 1493-1506.10.1007/s00299-016-1990-2490311127142995Search in Google Scholar

Svitashev S., Schwartz C., Lenderts B., Young J., Cigan A., 2016. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat. Commun. 7, 13274.10.1038/ncomms13274511608127848933Search in Google Scholar

Tanaka Y., Brugliera F., 2013. Flower colour and cytochromes P450. Phil. Trans. R. Soc. B 368, 20120432.10.1098/rstb.2012.0432353842223297355Search in Google Scholar

Tanaka Y., Brugliera F., Chandler S., 2009. Recent progress of flower colour modification by biotechnology. Intl. J. Mol. Sci. 10(12), 5350-5369.10.3390/ijms10125350280199820054474Search in Google Scholar

Tanaka Y., Sasaki N., Ohmiya A,. 2008. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J. 54(4), 733-749.Search in Google Scholar

Tennant P.F., Gonsalves C., Ling K.-S., Fitch M., Manshardt R., Slightorn J.L., Gonsalves D., 1994. Differential protection against Papaya ringspot virus isolates in coat protein gene transgenic papaya and classically cross-protected papaya. Phytopathology 84, 1359-1366.10.1094/Phyto-84-1359Search in Google Scholar

Tricoli D.M., Carney K.J., Russell P.F., Quemada H.D., McMaster R.J., Reynolds J.F., Deng R.Z., 2002. Transgenic plants expressing DNA constructs containing a plurality of genes to impart virus resistance. US patent 6337431, applied by Seminis Vegetable Seeds, Inc., filled 6.10.1997, published 8.01.2002. https://patentscope.wipo.int/search/en/detail.jsf?docId=US39710896. Accessed 19 June 2018.Search in Google Scholar

USDA, 2015a. Report on genetically engineered plant imports: Current and future. USDA, FY2015. https://www.aphis.usda.gov/biotechnology/downloads/audits/fy15_ge_plant_imports_rpt.pdf. Accessed 4 October 2017.Search in Google Scholar

USDA, 2015b. Coexistence fact sheets: Specialty farming. USDA Factsheet, February 2015. https://www.usda.gov/sites/default/files/documents/coexistence-specialty-farming-factsheet.pdf. Accessed 30 September 2017.Search in Google Scholar

USDA, 2016. National Nutrient Database for Standard Reference Release 28. USDA-ARS. https://ndb.nal.usda.gov/ndb/search/list?qlookup=09003. Accessed 24 September 2017.Search in Google Scholar

USDA Press, 2018. Secretary Perdue issues USDA statement on plant breeding innovation. USDA Office of Communications. Press Release No. 0070.18 of 28 March 2018.Search in Google Scholar

Vellekoop E., 2015. Genetic modification accepted in floriculture. Floral Daily 28 September 2015. http://www.floraldaily.com/article/2105/Genetic-modification-accepted-in-floriculture. Accessed 20 April 2018.Search in Google Scholar

Vellekoop E., 2017. Blue roses do not come out of the blue. Floral Daily 13 October 2017. http://www.floraldaily.com/article/12179/Blue-roses-do-not-come-out-of-the-blue. Accessed 23 April 2018.Search in Google Scholar

Wawrzyniak A., Marciniak A., Rajewska J., 2005. Lycopene content of selected foods available on the Polish market and estimation of its intake. Pol. J. Food Nutr. Sci. 14/55(2), 195-200.Search in Google Scholar

Wolt J., Wang K., Yang B., 2016. The regulatory status of genome-edited crops. Plant Biotechnol. J. 14(2), 510-518.10.1111/pbi.12444504209526251102Search in Google Scholar

Wong A.Y.-T., Chan A.W.-K., 2016. Genetically modified foods in China and the United States: A primer of regulation and intellectual property protection. Food Sci. Human Wellness 5, 124-140.10.1016/j.fshw.2016.03.002Search in Google Scholar

WTO, 2008. EC approval and marketing of biotech products. Dispute Settlement Reports 2006, Volume IV: Pages 1249 to 1754, Cambridge University Press, 1529.Search in Google Scholar

Yeh S.-D., Bau H.-J., Cheng Y.-H., Fan Ch.-Ch., Kung Y.-J., Chen S., et al., 2011. Isolated nucleic acid molecules from transgenic papaya line 16-0-1 resistant to papaya ringspot virus and use thereof. US patent 8,258,282 B2, application by National Chung Hsing University, filled 23.12.2009, published 28.04.2011. https://patentscope.wipo.int/search/en/detail.jsf?docId=US73224496. Accessed 19 June 2018.Search in Google Scholar

Yokotani N., Nakano R., Imanishi S., Nagata M., Inaba A., Kubo Y., 2009. Ripening-associated ethylene biosynthesis in tomato fruit is autocatalytically and developmentally regulated. J. Exp. Bot. 60(12), 3433-3442.10.1093/jxb/erp185272469719605457Search in Google Scholar

Yoruk R., Marshall M.R., 2003. Physicochemical properties and function of plant polyphenol oxidase: A review. J. Food Biochem. 27, 361-422.10.1111/j.1745-4514.2003.tb00289.xSearch in Google Scholar

eISSN:
2083-5965
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Life Sciences, Plant Science, Zoology, Ecology, other