Accesso libero

Numerical Procedures and their Practical Application in PV Module Analyses. Part IV: Atmospheric Transparency Parameters - Application

INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] Rodziewicz T, Teneta J, Zaremba A, Wacławek M. Analysis of solar energy resources in southern Poland for photovoltaic applications. Ecol Chem Eng S. 2013;20:177–98. DOI: 10.2478/eces-2013-0014.10.2478/eces-2013-0014Search in Google Scholar

[2] Chojnacki JA, Teneta J, Więckowski Ł. Development of PV systems and research studies on photovoltaic at the AGH University of Science and Technology in Krakow. Proc. 22nd EC PV Solar Energy Conference. Krakow: 2007;3049–52. https://www.eupvsec-proceedings.com/.Search in Google Scholar

[3] Zdanowicz T, Prorok M, Kolodenny W, Roguszczak H. Outdoor data acquisition system with advanced database for PV modules characterization. 3rd WCPEC. Osaka: 2003. http://www.pvsc-proceedings.org/.Search in Google Scholar

[4] Zdanowicz T, Roguszczak H. Automated outdoor data acquisition system for prolonged testing of PV modules. Proc 13th EC PV Solar Energy Conference. Nice: 1995;2322–5. https://www.eupvsec-proceedings.com/.Search in Google Scholar

[5] Rodziewicz T. Rajfur M. Numerical procedures and their practical application in PV modules analyses. Part I: Air mass. Opto-Electron Rev. 2019;27:39–57. DOI: 10.1016/j.opelre.2019.02.002.10.1016/j.opelre.2019.02.002Search in Google Scholar

[6] Rodziewicz T., Rajfur M. Numerical procedures and their practical application in PV modules’ analyses. Part II: Useful fractions and APE. Opto-Electron Rev. 2019;27:149–60. DOI: 10.1016/j.opelre.2019.05.004.10.1016/j.opelre.2019.05.004Search in Google Scholar

[7] Rodziewicz T, Rajfur M. Numerical procedures and their practical application in PV module analyses. Part III: parameters of atmospheric transparency - determining and correlations. Opto-Electron Rev. 2020;28(1):15–34. DOI: 10.24425/opelre.2020.132499.10.2478/eces-2020-0001Search in Google Scholar

[8] IEC 60891, Procedures for temperature and irradiance corrections to measured I–V characteristics of cFigtalline silicon photovoltaic devices. IEC norm No. 60891 2nd edition. 2009–12. https://www.iec.ch/search/?q=[17]IEC%2060891.Search in Google Scholar

[9] Blaesser G. PV System Measurements and Monitoring: The European Experience. 13–15 Nov. Proc. 9th Intern. PV Sci Eng Conf. Miyazaki (Japan):1996);157–60. http://www.pvsc-proceedings.org.Search in Google Scholar

[10] Blaesser G. PV Array Data Translation Procedure. Proc. 13th EC PVSEC. Nice: 1995;1520–3. https://www.eupvsec-proceedings.com/.Search in Google Scholar

[11] Corrs S, Böhm M. Validation and comparison of curve correction procedures for silicon solar cells. Proc 14th EC PVSEC. Balcerona: 1997;220–3. https://www.eupvsec-proceedings.com/.Search in Google Scholar

[12] Marion B, Rummel S, Anderber A. Current-voltage translation by bilinear interpolation, Prog Photovolt Res Appl. 2004;12:593–607. DOI: 10.1002/pip.551.10.1002/pip.551Search in Google Scholar

[13] Piliougine M, Elizondo D, Mora López L, Sidrach-de-Cardona M. Modelling photovoltaic modules with neural networks using angle of incidence and clearness index. Prog Photovol Res Applicat. 2015;23(4):513–23. DOI: 10.1002/pip.2449.10.1002/pip.2449Search in Google Scholar

[14] Lai ChS, Li X, Lai LL, Mcculloch MD. Daily clearness index profiles and weather conditions studies for photovoltaic systems. Energy Procedia. 2017;142:77–82. DOI: 10.1016/j.egypro.2017.12.013.10.1016/j.egypro.2017.12.013Search in Google Scholar

[15] Coppolino S. A new correlation between clearness index and relative sunshine. Renew Energy. 1994;4(4):417. DOI: 10.1016/0960-1481(94)90049-3.10.1016/0960-1481(94)90049-3Search in Google Scholar

[16] Nemes C, Ciobanu R, Rugina C. Probabilistic analysis of Sky clearness index for solar energy systems planning. Proc. Smart Cities Symposium Prague. 2018;24–5. DOI: 10.1109/SCSP.2018.8402677.10.1109/SCSP.2018.8402677Search in Google Scholar

[17] Petrović I, Vražić M. Approach to advanced clearness index modelling. Int Energy Conf (ENERGYCON). Cavtat, Croatia; 2014. DOI: 10.1109/ENERGYCON.2014.6850538.10.1109/ENERGYCON.2014.6850538Search in Google Scholar

[18] Nunnari G. Forecasting the Class of Daily Clearness Index for PV Applications. 15th Int Conf Informatics in Control, Automat Robotics. 2018;2:172–9. DOI: 10.5220/0006860801820189.10.5220/0006860801820189Search in Google Scholar

[19] Nakada Y, Takahashi H, Ichida K, Minemoto T. Influence of clearness index and air mass on sunlight and outdoor performance of photovoltaic modules. Current Appl Phys. 2010;10(2):261–4. DOI: 10.1016/j.cap.2009.11.026.10.1016/j.cap.2009.11.026Search in Google Scholar

[20] Takei R, Minemoto T, Yoshida S, Takakura H. Output energy estimation of Si-based photovoltaic modules using clearness index and air mass. Japan J Appl Phys. 2012;51:1–10. DOI: 10.1143/JJAP.51.10NF10.10.1143/JJAP.51.10NF10Search in Google Scholar

[21] Vasar C, Prostean G, Szeidert I. An analysis of diffuse solar radiation. 2016 IEEE 20th Jubilee Int Conf Intelligent Eng Systems (INES). Budapest; 2016. DOI: 10.1109/INES.2016.7555112.10.1109/INES.2016.7555112Search in Google Scholar

[22] Ragot Ph, Desmettre D, Paes P, Royer D. Outdoor Testing of Photovoltaic Modules and Arrays, Seventh E.C. Photovoltaic Solar Energy Conf: Sevilla, Spain: 1986;279–86. DOI: 10.1007/978-94-009-3817-5_52.10.1007/978-94-009-3817-5_52Search in Google Scholar

[23] Kinsey GS. PV Module Performance Testing and Standards: From Fundamentals to Applications. In: Photovoltaic Solar Energy. Chichester, West Sussex. United Kingdom: John Wiley Sons; 2017:362–9. DOI: 10.1002/9781118927496.ch33.10.1002/9781118927496.ch33Search in Google Scholar

[24] Halambalakis G. Long-term outdoor testing of polycrystalline silicon and micromorph silicon thin-film tandem technology modules in Greece. Proc. 28th EUPVSEC. Paris: 2013. https://www.eupvsec-proceedings.com/.Search in Google Scholar

[25] Erusiafe N, Chendo M, Obot N. Estimating Diffuse Solar Radiation from Global Solar Radiation. Proc EuroSun 2014. Aix-les-Bains, France; 2014. DOI: 10.18086/eurosun.2014.08.05.10.18086/eurosun.2014.08.05Search in Google Scholar

[26] Iqbal M. Estimation of the average diffuse component of the total solar radiation, Sun: Mankind's Future Source of Energy. Proc Int Solar Energy Society Congress. New Delhi, India; 1978:389–91. DOI: 10.1016/B978-1-4832-8407-1.50077-5.10.1016/B978-1-4832-8407-1.50077-5Search in Google Scholar

[27] Boland JW, Huang J, Ridley B. Decomposing global solar radiation into its direct and diffuse components. Renew Sustainable Energy Rev. 2013;28:749–56. DOI: 10.1016/j.rser.2013.08.023.10.1016/j.rser.2013.08.023Search in Google Scholar

[28] Lam JC, Li DHW. Correlation between global solar radiation and its direct and diffuse components. Build Environ. 1996;31(6):527–35. DOI: 10.1016/0360-1323(96)00026-1.10.1016/0360-1323(96)00026-1Search in Google Scholar

eISSN:
2084-4549
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Chemistry, Sustainable and Green Chemistry, Engineering, Electrical Engineering, Energy Engineering, Life Sciences, Ecology