Accesso libero

Improvement of Manual Assembly Line Based on Value Stream Mapping (VSM) and Efectiveness Coefficient

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Brzeziński, S., Klimecka-Tatar, D. 2016, Effect of the changes in the forming metal parameters on the value streams flow and the overall equipment effectiveness coefficient, 25th Anniversary International Conference on Metallurgy and Materials, Tanger Ltd., Ostrava, pp. 1750-1755.Search in Google Scholar

Favi, C., Germani, M., Marconi, M. 2017, A 4M Approach for a Comprehensive Analysis and Improvement of Manual Assembly Lines. Procedia Manufacturing 11, pp. 1510–1518. DOI: 10.1016/j.promfg.2017.07.283.10.1016/j.promfg.2017.07.283Open DOISearch in Google Scholar

Godina, R., Pimentel, C., Silva, F.J.G., Matias, J.C.O. 2018, Improvement of the Statistical Process Control Certainty in an Automotive Manufacturing Unit, Procedia Manufacturing 17, pp. 729–736. DOI: 10.1016/j.promfg.2018.10.123.10.1016/j.promfg.2018.10.123Open DOISearch in Google Scholar

Harari, N.S., Fundin, A., Carlsson, A.L. 2018, Components of the Design Process of Flexible and Reconfigurable Assembly Systems, Procedia Manufacturing 25, pp. 549–556. DOI: 10.1016/j.promfg.2018.06.118.10.1016/j.promfg.2018.06.118Open DOISearch in Google Scholar

Jagusiak-Kocik, M., 2014. Ensuring continuous improvement processes through standardization in the automotive company. Production Engineering Archives 2/1, pp.12–15. DOI: 10.30657/pea.2014.02.04.10.30657/pea.2014.02.04Open DOISearch in Google Scholar

Klimecka-Tatar, D. 2018, Context of production engineering in management model of value stream flow according to manufacturing industry, Production Engineering Archives 21, pp. 32-35. DOI: 10.30657/pea.2018.21.0710.30657/pea.2018.21.07Open DOISearch in Google Scholar

Klimecka-Tatar, D., 2017. Value stream mapping as lean production tool to improve the production process organization – case study in packaging manufacturing. Production Engineering Archives 17, pp. 40–44. DOI: http://dx.doi.org/10.30657/pea.2017.17.09.10.30657/pea.2017.17.09Open DOISearch in Google Scholar

Krynke, M., Knop, K., Mielczarek, K. 2014, Using Overall Equipment Effectiveness indicator to measure the level of planned production time usage of sewing machine, Production Engineering Archives 5/4, pp. 6-9. DOI: 10.30657/pea.2014.05.0210.30657/pea.2014.05.02Open DOISearch in Google Scholar

Lee, Dong-Hyeong; Na, Min-Woo; Song, Jae-Bok; Park, Chan-Hun; Park, Dong-Il. 2019, Assembly process monitoring algorithm using force data and deformation data, Robotics and Computer-Integrated Manufacturing 56, pp. 149–156. DOI: 10.1016/j.rcim.2018.09.008.10.1016/j.rcim.2018.09.008Open DOISearch in Google Scholar

Maszke, A. 2019, TPM Safety Impact – Case Study, CzOTO 2019, 1(1), 639–646. DOI: 10.2478/czoto-2019-008110.2478/czoto-2019-0081Open DOISearch in Google Scholar

Menn, J.P., Sieckmann, F., Kohl, H., Seliger, G. 2018, Learning process planning for special machinery assembly, Procedia Manufacturing 23, pp. 75–80. DOI:10.1016/j.promfg.2018.03.164.10.1016/j.promfg.2018.03.164Open DOISearch in Google Scholar

Moreira, B.M.D.N., Gouveia, R.M.,Silva, F.J.G.; Campilho, R.D.S.G. 2017, A Novel Concept of Production and Assembly Processes Integration, Procedia Manufacturing 11, pp. 1385–1395. DOI: 10.1016/j.promfg.2017.07.268.10.1016/j.promfg.2017.07.268Open DOISearch in Google Scholar

Naebulharam, R., Zhang, L. 2013, Performance Analysis of Serial Production Lines with Deteriorating Product Quality, IFAC Proceedings Volumes 46/9, pp. 501–506. DOI: 10.3182/20130619-3-RU-3018.00105.10.3182/20130619-3-RU-3018.00105Open DOISearch in Google Scholar

Nuchsara, K. and Nalin, P. 2007, The Assembly Line Balancing Problem: Review articles, KKU Engineering Journal 34/2, pp. 133 – 140.Search in Google Scholar

Renu, R.Sh.; Mocko, G. 2016, Computing similarity of text-based assembly processes for knowledge retrieval and reuse. Journal of Manufacturing Systems 39, pp. 101–110. DOI: 10.1016/j.jmsy.2016.03.004.10.1016/j.jmsy.2016.03.004Open DOISearch in Google Scholar

Roldán, J.J., Crespo, E., Martín-Barrio, A., Peña-Tapia, E., Barrientos, A. 2019, A training system for Industry 4.0 operators in complex assemblies based on virtual reality and process mining, Robotics and Computer-Integrated Manufacturing 59, pp. 305–316. DOI: 10.1016/j.rcim.2019.05.004.10.1016/j.rcim.2019.05.004Search in Google Scholar

Schmitt, R., Dietrich, F., Dröder, K. 2019, Methodology and experimental analysis of failure connections in precision assembly process data. Procedia CIRP 79, pp. 170–175. DOI: 10.1016/j.procir.2019.02.039.10.1016/j.procir.2019.02.039Open DOISearch in Google Scholar

Shen, C.-C. 2015, Discussion on key successful factors of TPM in enterprises. Journal of pp. Applied Research and Technology 13/3 pp. 425–427. DOI: 10.1016/j.jart.2015.05.002.10.1016/j.jart.2015.05.002Open DOISearch in Google Scholar

Shim, M., Kim, J-H. 2018, Design and optimization of a robotic gripper for the FEM assembly process of vehicles, Mechanism and Machine Theory 129, pp. 1–16. DOI: 10.1016/j.mechmachtheory.2018.07.006.10.1016/j.mechmachtheory.2018.07.006Open DOISearch in Google Scholar

Tracht, K., Funke, L., Schottmayer, M., 2015, Online-control of assembly processes in paced production lines, CIRP Annals 64/1, pp. 395–398. DOI: 10.1016/j.cirp.2015.04.112.10.1016/j.cirp.2015.04.112Open DOISearch in Google Scholar