Accesso libero

Structural Steel Tensile Fracture-Inception Prevention Limit State and Ductility Criteria

INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] Architectural Institute of Japan (AIJ): Fracture in steel structures during a severe earthquake (in Japanese). Tokyo, 1995.Search in Google Scholar

[2] JIA, L. - KUWAMURA, H.: Ductile Fracture Simulation of Structural Steels under Monotonic Tension. Journal of Structural Engineering, 04013115-1-12, 2013, DOI: 10.1061/(ASCE)ST.1943-541X.0000944.10.1061/(ASCE)ST.1943-541X.0000944Search in Google Scholar

[3] BORDIGNON, N. - PICCOLROAZ, A. - DAL CORSO, F. - BIGON, D.: Strain localization and shear band propagation in ductile materials. Frontiers in Materials, Article 22, 1, 2015.10.3389/fmats.2015.00022Search in Google Scholar

[4] RICE, J. R.: The Localization of Plastic Deformation in Theoretical and Applied Mechanics. Proceedings of the 14th International Congress on Theoretical and Applied Mechanics, Delft, 1976, ed. W.T. Koiter, Vol. 1, North Holland Publishing Co., 1976, pp. 207-220.Search in Google Scholar

[5] SUN, X. - CHOI, K. S. - LIU, W. N. - KHALEEL, M. A.: Predicting failure modes and ductility of dual phase steels using plastic strain localization. International Journal of Plasticity, 25(10), 2009, pp. 1888-1909.10.1016/j.ijplas.2008.12.012Search in Google Scholar

[6] LI, Y. - LUO, M. - GERLACH, J. - WIERZBICKI, T.: Prediction of shear-induced fracture in sheet metal forming. Journal of Materials Processing Technology 210, 2010, pp. 1858–1869.10.1016/j.jmatprotec.2010.06.021Search in Google Scholar

[7] BAO, C. - FRANCOIS, M. - JONCOUR, L. Le.: A Closer Look at the Diffuse and Localised Necking of A Metallic Thin Sheet: Evolution of the Two Bands Pattern. An international journal for experimental mechanics. 52, 2016, pp. 244–260. doi: 10.1111/str.12184.10.1111/str.12184Search in Google Scholar

[8] EL-NAAMAN, S. A. - NIELSEN, K. L.: Observations on Mode I ductile tearing in sheet metals. European Journal of Mechanics A/Solids 42, 2013, pp. 54-62.10.1016/j.euromechsol.2013.04.007Search in Google Scholar

[9] ADEWOLE, K. K. - OLUTOGE, F. A.: Numerical prediction of structural steel flat and slant fracture modes using phenomenological shear fracture model. Journal of King Saud University-Engineering Sciences, 2017. doi.org/10.1016/j.jksues.2017.11.001.Search in Google Scholar

[10] BJÖRKLUND, O. - NILSSON, L.: Failure characteristics of a dual-phase steel sheet. Journal of Materials Processing Technology, 214, 2014, pp. 1190–1204.10.1016/j.jmatprotec.2014.01.004Search in Google Scholar

[11] HOOPUTRA, H. - GESE, H. - DELL, H. - WERNER, H. A.: Comprehensive failure model for crashworthiness simulation of aluminium extrusions. Int. J. Crashworthiness, 9(5), 2004, pp. 449–464.10.1533/ijcr.2004.0289Search in Google Scholar

[12] ARASARATNAM, P. - SIVAKUMARAN, K. S. - TAIT, M. J.: True Stress-True Strain Models for Structural Steel Elements. International Scholarly Research Network ISRN Civil Engineering, Vol. 2011, Article ID 656401, 2011. doi:10.5402/2011/656401.10.5402/2011/656401Search in Google Scholar

[13] SEIF, M. - MAIN, J. - WEIGAND, J. - MCALLISTER, T. P. - LUECKE, W.: Finite element modeling of structural steel component failure at elevated temperatures. Structures, 6, 2016, pp. 134–145.10.1016/j.istruc.2016.03.002Search in Google Scholar

[14] CABEZAS, E. E. -. CELENTANO, D. J.: Experimental and numerical analysis of the tensile test using sheet specimens. Mecanical computacional, 21, 2012, pp. 854-873.Search in Google Scholar

[15] ADEWOLE, K. K. - TEH, L. H.: Predicting steel tensile responses and fracture using the phenomenological ductile shear fracture model. American Society of Civil Engineering Journal of Materials in Civil Engineering, ASCE, 2017, doi: 10.1061/(ASCE)MT.1943-5533. 0002094, 2017.Search in Google Scholar

[16] BAI, Y. - WIERZBICKI, T.: A new model of metal plasticity and fracture with pressure and Lode dependence. International Journal of Plasticity, 24, 2008, pp. 1071–1096.10.1016/j.ijplas.2007.09.004Search in Google Scholar

[17] WEN, H. - MAHMOUD, H.: New model for ductile fracture of metal alloys. I: Monotonic loading. J. Eng. Mech., 10.1061/(ASCE) EM.1943-7889.0001009, 2015, pp. 1858–1869.Search in Google Scholar

[18] XUE, L.: Constitutive modeling of void shearing effect in ductile fracture of porous materials. Eng. Fract. Mech., 75(11), 2008, pp. 3343–3366.10.1016/j.engfracmech.2007.07.022Search in Google Scholar

[19] ROTH, C. C. - MOHR, D.: Ductile fracture experiments with locally proportional loading histories. International Journal of Plasticity, 79, 2016, pp. 328-354.10.1016/j.ijplas.2015.08.004Search in Google Scholar

[20] DANAS, K. - CASTANED, P. P.: Influence of the Lode parameter and the stress triaxiality on the failure of elasto-plastic porous materials. Int. J. Solids Struct., 49(11–12), 2012, pp. 1325–1342.10.1016/j.ijsolstr.2012.02.006Search in Google Scholar

[21] NAHSHON, K. - HUTCHINSON, J. W.: Modification of the Gurson model for shear fracture. European Journal of Mechanics and Solids, 27, 2008, pp. 1–17.10.1016/j.euromechsol.2007.08.002Search in Google Scholar

[22] [22] CHENG, L. - MONCHIET, V. - MORIN, L. - SAXCÉ, G. - KONDO, D.: An analytical Lode angle dependent damage model for ductile porous materials. Engineering Fracture Mechanics, 149, 2015, pp. 119–133.10.1016/j.engfracmech.2015.09.038Search in Google Scholar

[23] ROGERS, C. A. - HANCOCK, G. J.: Ductility of G550 Sheet Steels in Tension - Elongation Measurements and Perforated Tests. Research Report No R735, Department of Civil Engineering, The University of Sydney, Sydney NSW 2006, AUSTRALIA, 1996.Search in Google Scholar

[24] MOZE, P. - BEG, D. - LOPATI, J.: Net cross-section design resistance and local ductility of elements made of high strength steel. J. Constr. Steel Res., 63(11), 2007, pp. 1431–1441.10.1016/j.jcsr.2007.01.009Search in Google Scholar

[25] Simulia: Abaqus documentation, Abaqus Incorporated, Dassault Systemes, 2007.Search in Google Scholar

[26] ADEWOLE, K. K. - BULL, S. J.: Prediction of the fracture performance of defect-free steel bars for civil engineering applications using finite element simulation. Construction and Building Materials, 41, 2013, pp. 9–14.10.1016/j.conbuildmat.2012.11.089Search in Google Scholar

[27] ADEWOLE, K. K. - BULL, S. J.: Prediction of tensile and fracture properties of cracked carbon steel wire using finite element simulation. Journal of Civil Engineering and Management, 20(1), 2014, pp. 1-10.10.3846/13923730.2013.861862Search in Google Scholar

[28] ADEWOLE, K. K. - BULL, S. J.: Finite element failure analysis of wires for civil engineering applications with various crack-like laminations. Engineering failure analysis, 60, 2016, pp. 229-249.10.1016/j.engfailanal.2015.11.043Search in Google Scholar

[29] ADEWOLE, K. K.: Appropriate mesh design for predicting complete fracture behavior of wires for civil engineering applications. American Society of Civil Engineering Journal of Materials in Civil Engineering, ASCE, 26(12), 2014, pp. 04014095 - 04014096-2.10.1061/(ASCE)MT.1943-5533.0001064Search in Google Scholar

eISSN:
2199-6512
ISSN:
1336-5835
Lingua:
Inglese