Accesso libero

Effects of Partial Replacement of Soybean Meal With Rapeseed Meal, Narrow-Leaved Lupin, DDGS, and Probiotic Supplementation, on Performance and Gut Microbiota Activity and Diversity in Broilers

INFORMAZIONI SU QUESTO ARTICOLO

Cita

AOAC (2005). Official Methods of Analysis (18th ed.). Association of Official Analytical Chemists, Arlington, VASearch in Google Scholar

Aviagen (2014). Ross 308 broiler: performance objectives. Accessed August 2017. http://en.aviagen.com/assets/Tech.Center/Ross.Broiler/Ross-308-Broiler-PO-214-EN.pdf.Search in Google Scholar

Barszcz M., Taciak M., Skomiał J. (2011). A dose-response effects of tannic acid and protein on growth performance, caecal fermentation, colon morphology, and β-glucuronidase activity of rats. J. Anim. Feed Sci., 20: 613–625.10.22358/jafs/66219/2011Search in Google Scholar

Beaud D., Tailliez P., Anba-Mondoloni J. (2005). Genetic characterization of the beta-glucuronidase enzyme from a human intestinal bacterium, Ruminococcus gnavus. Microbiology, 151: 2323–2330.10.1099/mic.0.27712-0Search in Google Scholar

Bjerrum L., Engberg R.M., Leser T.D., Jensen B.B., Finster K., Pedersen K. (2006). Microbial community composition of the ileum and cecum of broiler chickens as revealed by molecular and culture-based techniques. Poultry Sci., 85: 1151–1164.10.1093/ps/85.7.1151Search in Google Scholar

Czerwiński J., Højberg O., Smulikowska S., Engberg R.M., Mieczkowska A. (2010). Influence of dietary peas and organic acids and probiotic supplementation on performance and caecal microbial ecology of broiler chickens. Brit. Poult. Sci., 51: 258–269.10.1080/00071661003777003Search in Google Scholar

Czerwiński J., Højberg O., Smulikowska S., Engberg R.M., Mieczkowska A. (2012). Effects of sodium butyrate and salinomycin upon intestinal microbiota, mucosal morphology and performance of broiler chickens. Arch. Anim. Nutr., 66: 102–116.10.1080/1745039X.2012.663668Search in Google Scholar

De Cesare A., Sirri F., Manfreda G., Moniaci P., Giardini A., Zampiga M., Meluzzi A. (2017). Effect of dietary supplementation with Lactobacillus acidophilus D2/CSL (CECT 4529) on caecum microbioma and productive performance in broiler chickens. PloS One, 12: e0176309.10.1371/journal.pone.0176309Search in Google Scholar

Gao P., Ma C.H., Sun Z., Wang L., Huang S., Su X., Xu J., Zhang H. (2017). Feed-additive probiotics accelerate yet antibiotics delay intestinal microbiota maturation in broiler chicken. Microbiome, 5: 91.10.1186/s40168-017-0315-1Search in Google Scholar

ISO 9167-1 (1992). Rapeseeds – Determination of glucosinolates content. Part 1. Method using gradient elution high performance liquid chromatography. Geneva: ISO.Search in Google Scholar

Jin L.Z., Ho Y.W., Abdullah N., Jalaludin S. (2000). Digestive and bacterial enzyme activities in broilers fed diets supplemented with Lactobacillus cultures. Poultry Sci., 79: 886–891.10.1093/ps/79.6.886Search in Google Scholar

Jørgensen H., Zhao X-Q., Bach Knudsen K.E., Eggum B. (1996). The influence of dietary fibre source and level on the development of the gastrointestinal tract, digestibility and energy metabolism in broiler chickens. Brit. J. Nutr., 75: 379–395.10.1079/BJN19960141Search in Google Scholar

Józefiak D., Rutkowski A., Martin S.A. (2004). Carbohydrate fermentation in the avian ceca: a review. Anim. Feed Sci. Tech., 113: 1–15.10.1016/j.anifeedsci.2003.09.007Search in Google Scholar

Konieczka P., Smulikowska S. (2018). Viscosity negatively affects the nutritional value of blue lupin seeds for broilers. Animal, 12: 1144–1153.10.1017/S1751731117002622Search in Google Scholar

Konieczka P., Nowicka K., Madar M., Taciak M., Smulikowska S. (2018). Effects of pea extrusion and enzyme and probiotic supplementation on performance, microbiota activity and biofilm formation in the broiler gastrointestinal tract. Br. Poult. Sci., 59: 654–662.10.1080/00071668.2018.1507017Search in Google Scholar

Loar II R.E., Donaldson J.R., Corzo A. (2012). Effects of feeding distillers dried grains with solubles to broilers from 0 to 42 days posthatch on broiler performance, carcass characteristics, and selected intestinal characteristics. J. Appl. Poult. Res., 21: 48–62.10.3382/japr.2011-00339Search in Google Scholar

MacFarlane S., MacFarlane G.T. (2003). Regulation of short-chain fatty acid production. Proc. Nutr. Soc., 62: 67–72.10.1079/PNS2002207Search in Google Scholar

Olnood Ch.G., Beski S.S.M., Iji P.A., Choct M. (2015). Delivery routes for probiotics: effects on broiler performance, intestinal morphology and gut microflora. Anim. Nutr., 1: 192–202.10.1016/j.aninu.2015.07.002Search in Google Scholar

Pan D., Yu Z. (2014). Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes, 5: 108–119.10.4161/gmic.26945Search in Google Scholar

Pedersen M.B., Dalsgaard S., Knudsen K.E.B., Yu S., Lærke H.N. (2014). Compositional profile and variation of distillers dried grains with solubles from various origins with focus on non-starch polysaccharides. Anim. Feed Sci. Tech., 197: 130–141.10.1016/j.anifeedsci.2014.07.011Search in Google Scholar

Pool-Zobel B., Van Loo J., Rowland I., Roberfroid M.B. (2002). Experimental evidences on the potential of prebiotic fructans to reduce the risk of colon cancer. Brit. J. Nutr., 87: S273–SS281.10.1079/BJN/2002548Search in Google Scholar

Pustjens A.M., Schols H.A., Kabel M.A., Gruppen H. (2013). Characterisation of cell wall polysaccharides from rapeseed (Brassica napus) meal. Carbohydr Polym., 98: 1650–1656.10.1016/j.carbpol.2013.07.059Search in Google Scholar

Rehman H.U., Vahjen W., Awad W.A., Zentek J. (2007). Indigenous bacteria and bacterial metabolic products in the gastrointestinal tract of broiler chickens. Arch. Anim. Nutr., 61: 319–335.10.1080/17450390701556817Search in Google Scholar

Rinttilä T., Apajalahti J. (2013). Intestinal microbiota and metabolites – Implications for broiler chicken health and performance. J. Appl. Poult. Res., 22: 647–658.10.3382/japr.2013-00742Search in Google Scholar

Rubio L.A., Brenes A., Setién I., de la Asunción G., Durán N., Cutuli M.T. (1998). Lactobacilli counts in crop, ileum and caecum of growing broiler chickens fed on practical diets containing whole or dehulled sweet lupin (Lupinus angustifolius) seed meal. Brit. Poult. Sci., 39: 354–359.10.1080/00071669888890Search in Google Scholar

Sergeant M.J., Constantinidou C., Cogan T.A., Bedford M.R., Penn C.W., Pallen M.J. (2014). Extensive microbial and functional diversity within the chicken cecal microbiome. PLoS One 9: e91941; doi:10.1371/journal.pone.0091941.10.1371/journal.pone.0091941396236424657972Search in Google Scholar

Sharifi S.D., Dibamehr A., Lotfollahian H., Baurhoo B. (2012). Effects of flavomycin and probiotic supplementation to diets containing different sources of fat on growth performance, intestinal morphology, apparent metabolizable energy, and fat digestibility in broiler chickens. Poultry Sci., 91: 918–927.10.3382/ps.2011-01844Search in Google Scholar

Smulikowska S., Rutkowski A. (Eds) (2005). Recommended Allowances and Nutritive Value of Feedstuffs – Poultry Feeding Standards (in Polish). 4th Edition. The Kielanowski Institute of Animal Physiology and Nutrition, PAS, Jabłonna (Poland).Search in Google Scholar

Statistical Graphic Corporation 1982–2010. STATGRAPHICS® Centurion XVI version 16.1.03. Statistical Graphic System, Statistical Graphic Corporation.Search in Google Scholar

Timmerman H.M., Veldman A., van den Elsen E., Rombouts F.M., Beynen A.C. (2006). Mortality and growth performance of broilers given drinking water supplemented with chicken-specific probiotics. Poultry Sci., 85: 1383–1388.10.1093/ps/85.8.1383Search in Google Scholar

Van der Wielen P.W., Biesterveld S., Notermans S., Hofstra H., Urlings B.A., van Knapen F. (2000). Role of volatile fatty acids in development of the cecal microflora in broiler chickens during growth. Appl. Environ. Microbiol., 66: 2536–2540.10.1128/AEM.66.6.2536-2540.2000Search in Google Scholar

Yadav S., Jha R. (2019). Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. J. Anim. Sci. Biotech., 10: 2; https://doi.org/10.1186/s40104-018-0310-9.10.1186/s40104-018-0310-9633257230651986Open DOISearch in Google Scholar

Zduńczyk Z., Jankowski J., Juśkiewicz J., Mikulski D., Słominski B.A. (2013). Effect of different dietary levels of low-glucosinolate rapeseed (canola) meal and non-starch polysaccharide-degrading enzymes on growth performance and gut physiology of growing turkeys. Can. J. Anim. Sci., 93: 353–362.10.4141/cjas2012-085Search in Google Scholar

Zduńczyk Z., Jankowski J., Rutkowski A., Sosnowska E., Drażbo A., Zduńczyk P., Juśkiewicz J. (2014). The composition and enzymatic activity of gut microbiota in laying hens fed diets supplemented with blue lupine seeds. Anim. Feed Sci. Tech., 191: 57–66.10.1016/j.anifeedsci.2014.01.016Search in Google Scholar

Zduńczyk Z., Jankowski J., Kaczmarek S., Juśkiewicz J. (2015). Determinants and effects of postileal fermentation in broilers and turkeys. Part 2: cereal fibre and SBM substitutes. World Poultry Sci. J., 71: 49–57.10.1017/S0043933915000057Search in Google Scholar

eISSN:
2300-8733
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine