Accesso libero

Analytical and approximate solutions of Fractional Partial Differential-Algebraic Equations

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Introduction

In the past several years ago, various methods have been proposed to obtain the numerical solution of partial differential-algebraic equations [2], [7], [11], [12], [13], [14], [15], [16]. In this study, we consider the following system of partial differential-algebraic equations of fractional order ADαtv(t,x)+BLxv(t,x)+Cv(t,x)=f(t,x),[AD\begin{array}{*{20}c} \alpha & {} \\ t & {} \\ {} & {} \\\end{array}v(t,x) + BL_x v(t,x) + Cv(t,x) = f(t,x), Where α is a parameter describing the fractional derivative and t ∈ (0, te), 0 < α ≤ 1 and x ∈ (−l, l) ⊂ R, A, B, CRn×n, are constant matrices, u, f : [0, te] × [−l, l] → Rn. The purpose of this paper is to consider the numerical solution of FPDAEs by using Fractional Differential Transform Method.

Basic Definitions

We give some basic definitions and properties of the fractional calculus theory which are used further in this paper.

Definition 1

A real function f (x), x > 0 is said to be in the space Cµ, µεR if there exists a real number P > µ such that f (x) = xp f1(x), where f1(x)εC[(0, ∞). Clearly Cµ < Cβ if µ < β.

Definition 2

A function f (x), x > 0 is said to be in the space Cμm[C_\mu ^m \, , mεN ∪ {0} if f(m)Cµ.

Definition 3

The Riemann-Liouville fractional integral operator of the order α > 0 of a function, fCµ, µ ≥ −1 is defined as: (Jaαf)(x)=1Γ(α)ax(xτ)α1f(τ)dτ,x>a,[(J_a^\alpha f)(x) = \frac{1}{{\Gamma (\alpha )}}\int_a^x (x - \tau )^{\alpha - 1} f(\tau )d\tau ,x > a,(Ja0f)(x)=f(x).[(J_a^0 f)(x) = f(x).

Properties of the operator Jα can be found in (Caputo, 1967), we mention only the following:

For fCµ, µ ≥ −1, α, β ≥ 0, and γ > −1. (JaαJaβf)(x)=(Jaα+βf)(x),[(J_a^\alpha J_a^\beta f)(x) = (J_a^{\alpha + \beta } f)(x),(JaαJaβf)(x)=(JaβJaαf)(x)[(J_a^\alpha J_a^\beta f)(x) = (J_a^\beta J_a^\alpha f)(x)Jaαxγ=Γ(γ+1)Γ(α+γ+1)xα+γ.[J_a^\alpha x^\gamma = \frac{{\Gamma (\gamma + 1)}}{{\Gamma (\alpha + \gamma + 1)}}x^{\alpha + \gamma } .

Definition 4

The fractional derivative of f (x) in the Caputo sense is defined as (Dαaf)(x)=(JmαaDmf)(x)=1Γ(ma)ax(xt)mα1f(m)(t)dt,[(D\begin{array}{*{20}c} \alpha & {} \\ a & {} \\ {} & {} \\\end{array}f)(x) = (J\begin{array}{*{20}c} {m - \alpha } & {} \\ a & {} \\ {} & {} \\\end{array}D^m f)(x) = \frac{1}{{\Gamma (m - a)}}\int_a^x (x - t)^{m - \alpha - 1} f^{(m)} (t)dt,\;\;\;\; for m − 1 < α < m, mN, x > 0,.

Lemma 1

If −1 < α < m, mN and µ ≥ −1, then(JaαDaαf)(x)=f(x)k=0m1fk(a)((xa)kk!),a0[(J_a^\alpha D_a^\alpha f)(x) = f(x) - \sum\limits_{k = 0}^{m - 1} f^k (a)(\frac{{(x - a)^k }}{{k!}}),a \ge 0(DaαJaαf)(x)=f(x)[(D_a^\alpha J_a^\alpha f)(x) = f(x)

fractional Two-Dimensional Differential Transform Method

Differential Transform Method (DTM) is an analytic method based on the Taylor series expansion which constructs an analytical solution in the form of a polynomial. The traditional high order Taylor series method requires symbolic computation. However, the FDTM obtains a polynomial series solution using an iterative procedure. The proposed method is based on the combination of the classical two-dimensional FDTM and generalized Taylor’s Table 1 formula. Consider a function of two variables u(x, y) and suppose that it can be represented as a product of two single-variable functions, that is, u(x, y) = f(x)g(y) based on the properties of fractional two-dimensional differential transform [1], [3], [4], [5], [6], [8], [9], [10], the function u(x, y) can be represented as:

The operations for the two-dimensional differential transform method

Transformed functionOriginal function
Uα,β = Vα,β +Wα,βu(x,y) = v(x,y)w(x,y)
Uα,β = λVα,βu(x,y) = λv(x,y)
Uα,β(k,h)=r=0ks=0hVα,β(r,hs)Wα,β(kr,s)[U_{\alpha ,\beta } (k,h) = \sum\nolimits_{r = 0}^k \sum\nolimits_{s = 0}^h V_{\alpha ,\beta } (r,h - s)W_{\alpha ,\beta } (k - r,s)u(x,y) = v(x,y)w(x,y)
Uα,β(k,h)=δ(kn)δ(hm)={1,k=n,h=m0,kn,hm[U_{\alpha ,\beta } (k,h) = \delta (k - n)\delta (h - m) = \{ \begin{array}{*{20}c} {1,k = n,h = m} \\ {0,k \ne n,h \ne m} \\ {} \\\end{array}u(x,y) = (xx0) (yy0)
Uα,β(k,h)=Γ(α(k+1)+1)Γ(αk+1)Vα,β(k+1,h)[U_{\alpha ,\beta } (k,h) = \frac{{\Gamma (\alpha (k + 1) + 1)}}{{\Gamma (\alpha k + 1)}}V_{\alpha ,\beta } (k + 1,h)Vα,β(k+ 1, h)u(x,y)=Dx0αv(x,y)[u(x,y) = D_{x_0 }^\alpha v(x,y)
Uα,β(k,h)=Γ(β(h+1)+1)Γ(βh+1)Vα,β(k,h+1)[U_{\alpha ,\beta } (k,h) = \frac{{\Gamma (\beta (h + 1) + 1)}}{{\Gamma (\beta h + 1)}}V_{\alpha ,\beta } (k,h + 1)Vα,β(k,h+ 1)u(x,y)=Dy0βv(x,y)[u(x,y) = D_{y_0 }^\beta v(x,y)
Uα,β(k,h)=Γ(α(k+1)+1)Γ(αk+1)Γ(β(h+1)+1)Γ(βh+1)[U_{\alpha ,\beta } (k,h) = \frac{{\Gamma (\alpha (k + 1) + 1)}}{{\Gamma (\alpha k + 1)}}\frac{{\Gamma (\beta (h + 1) + 1)}}{{\Gamma (\beta h + 1)}} . Vα,β(k+ 1, h+ 1), 0< α,β ≤ 1u(x,y)=Dx0αDy0βv(x,y)[u(x,y) = D_{x_0 }^\alpha D_{y_0 }^\beta v(x,y)
u(x,y)=k=0Fα(k)(xx0)kαh=0Gβ(h)(yy0)hβ=k=0h=0Uα,β(k,h)(xx0)kα(yy0)hβ,[u(x,y) = \sum\limits_{k = 0}^\infty F_\alpha (k)(x - x_0 )^{k\alpha } \sum\limits_{h = 0}^\infty G_\beta (h)(y - y_0 )^{h\beta } = \sum\limits_{k = 0}^\infty \sum\limits_{h = 0}^\infty U_{\alpha ,\beta } (k,h)(x - x_0 )^{k\alpha } (y - y_0 )^{h\beta } , Where 0 < α, β ≤ 1, Uα,β (k, h) = Fα(k)Gβ (h), is called the spectrum of u(x, y). The fractional two-dimensional differential transform of the function u(x, y) is given by Uα,β(k,h)=1Γ(αk+1)Γ(βh+1)[(Dx0α)k(Dy0β)hu(x,y)](x0,y0).[U_{\alpha ,\beta } (k,h) = \frac{1}{{\Gamma (\alpha k + 1)\Gamma (\beta h + 1)}}[(D_{x_0 }^\alpha )^k (D_{y_0 }^\beta )^h u(x,y)]_{(x_0 ,y_0 )} . Where (Dx0α)k=Dx0αDx0αDx0αk[(D_{x_0 }^\alpha )^k = \underbrace {D_{x_0 }^\alpha \cdot D_{x_0 }^\alpha \cdots D_{x_0 }^\alpha }_k

In the case of α = 1 and β = 1 the Fractional two-dimensional differential transform (9) reduces to the classical two-dimensional differential transform. Let Uα,β (k, h), wα,β (k, h) and Vα,β (k, h) are the differential transformations of the functions u(x, y), w(x, y) and v(x, y), from Equations(9) and (10) , some basic properties of the two-dimensional differential transform are introduced in Table 1 .

Then, the fractional differential transform (10) becomes; Uα,β(k,h)=1Γ(αk+1)Γ(βh+1)[Dx0αk(Dy0β)hu(x,y)](x0,y0),[U_{\alpha ,\beta } (k,h) = \frac{1}{{\Gamma (\alpha k + 1)\Gamma (\beta h + 1)}}[D_{x_0 }^{\alpha k} (D_{y_0 }^\beta )^h u(x,y)]_{(x_0 ,y_0 )} ,

Numerical example

Here, the fractional differential transform method will be applied for solving the fractional partial differential-algebraic equation.

Example 2

Consider the fractional partial differential-algebraic equation(011211000)Dtαv+(000000001)vxx+(000010001)v=f,[\left( {\begin{array}{*{20}c} 0 & 1 & 1 & {} \\ 2 & { - 1} & { - 1} & {} \\ 0 & 0 & 0 & {} \\ {} & {} & {} & {} \\\end{array}} \right)D_t^\alpha v + \left( {\begin{array}{*{20}c} 0 & 0 & 0 & {} \\ 0 & 0 & 0 & {} \\ 0 & 0 & { - 1} & {} \\ {} & {} & {} & {} \\\end{array}} \right)v_{xx} + \left( {\begin{array}{*{20}c} 0 & 0 & 0 & {} \\ 0 & { - 1} & 0 & {} \\ 0 & 0 & 1 & {} \\ {} & {} & {} & {} \\\end{array}} \right)v = f,x ∈ [−0.5, 0.5], t ∈ [0,1].

With initial conditionv1(x,0)=x2,v1t(x,0)=x2,v2(x,0)=x2,v2t(x,0)=x22,v3(x,0)=0,v3t(x,0)=x2,[v_1 (x,0) = x^2 ,v_{1t} (x,0) = - x^2 ,v_2 (x,0) = x^2 ,v_{2t} (x,0) = \frac{{ - x^2 }}{2},v_3 (x,0) = 0,v_{3t} (x,0) = x^2 ,wheref1(x,t)=12x2e12t+x2cos(t),f2(x,t)=2x2et12x2e12tx2cos(t),f3(x,t)=2sin(t)+x2sin(t),[f_1 (x,t) = \frac{{ - 1}}{2}x^2 e^{\frac{{ - 1}}{2}t} + x^2 \cos (t),f_2 (x,t) = 2x^2 e^t \frac{{ - 1}}{2}x^2 e^{\frac{{ - 1}}{2}t} - x^2 \cos (t),f_3 (x,t) = - 2\sin (t) + x^2 \sin (t),with the exact solutionv(x,t)=(x2etx2et2x2sin(t)),[v(x,t) = \left( {\begin{array}{*{20}c} {x^2 e^{ - t} } & {} \\ {x^2 e^{\frac{{ - t}}{2}} } & {} \\ {x^2 \sin (t)} & {} \\ {} & {} \\\end{array}} \right),

Equivalently, equation (12) can be written as(011211000)(Dtαv1Dtαv2Dtαv3)+(000000001)(v1xxv2xxv3xx)+(000010001)(v1v2v3)=(f1f2f3),[\left( {\begin{array}{*{20}c} 0 & 1 & 1 & {} \\ 2 & { - 1} & { - 1} & {} \\ 0 & 0 & 0 & {} \\ {} & {} & {} & {} \\\end{array}} \right)\left( {\begin{array}{*{20}c} {D_t^\alpha v_1 } & {} \\ {D_t^\alpha v_2 } & {} \\ {D_t^\alpha v_3 } & {} \\ {} & {} \\\end{array}} \right) + \left( {\begin{array}{*{20}c} 0 & 0 & 0 & {} \\ 0 & 0 & 0 & {} \\ 0 & 0 & { - 1} & {} \\ {} & {} & {} & {} \\\end{array}} \right)\left( {\begin{array}{*{20}c} {v_{1xx} } & {} \\ {v_{2xx} } & {} \\ {v_{3xx} } & {} \\ {} & {} \\\end{array}} \right) + \left( {\begin{array}{*{20}c} 0 & 0 & 0 & {} \\ 0 & { - 1} & 0 & {} \\ 0 & 0 & 1 & {} \\ {} & {} & {} & {} \\\end{array}} \right)\left( {\begin{array}{*{20}c} {v_1 } & {} \\ {v_2 } & {} \\ {v_3 } & {} \\ {} & {} \\\end{array}} \right) = \left( {\begin{array}{*{20}c} {f_1 } & {} \\ {f_2 } & {} \\ {f_3 } & {} \\ {} & {} \\\end{array}} \right),Dtαv2+Dtαv3=f1,2Dtαv1Dtαv2Dtαv3v2=f2,v3xx+v3=f3.[D_t^\alpha v_2 + D_t^\alpha v_3 = f_1 ,2D_t^\alpha v_1 - D_t^\alpha v_2 - D_t^\alpha v_3 - v_2 = f_2 , - v_{3xx} + v_3 = f_3 .

By using the DTM in equation (17) , we obtainV2(k,h+1)Γ(α(h+1)+1)Γ(αh+1)+V3(k,h+1)Γ(α(h+1)+1)Γ(αh+1)=F1(k,h),2V1(k,h+1)Γ(α(h+1)+1)Γ(αh+1)V2(k,h+1)Γ(α(h+1)+1)Γ(αh+1)+V3(k,h+1)Γ(α(h+1)+1)Γ(αh+1)V2(k,h)=F2(k,h),(k+2)(k+1)V3(k+2,h)+V3(k,h)=F3(k,h),[\begin{array}{l} V_2 (k,h + 1)\frac{{\Gamma (\alpha (h + 1) + 1)}}{{\Gamma (\alpha h + 1)}} + V_3 (k,h + 1)\frac{{\Gamma (\alpha (h + 1) + 1)}}{{\Gamma (\alpha h + 1)}} = F_1 (k,h), \\ 2V_1 (k,h + 1)\frac{{\Gamma (\alpha (h + 1) + 1)}}{{\Gamma (\alpha h + 1)}} - V_2 (k,h + 1)\frac{{\Gamma (\alpha (h + 1) + 1)}}{{\Gamma (\alpha h + 1)}} + V_3 (k,h + 1)\frac{{\Gamma (\alpha (h + 1) + 1)}}{{\Gamma (\alpha h + 1)}} - V_2 (k,h) = F_2 (k,h), \\ - (k + 2)(k + 1)V_3 (k + 2,h) + V_3 (k,h) = F_3 (k,h), \\ \end{array}from the initial condition (13) , we haveV1(k,1)=δ(k2)={1k=2,0k2,V2(k,1)=12δ(k2)={12k=2,0k2,V3(k,0)=0,k=0,1,,V1(k,0)=V2(k,0)=V3(k,1)=δ(k2)={1k=2,0k2,.[\begin{array}{l} V_1 (k,1) = - \delta (k - 2) = \{ \begin{array}{*{20}c} { - 1} & {k = 2,} & {} \\ 0 & {k \ne 2,} & {} \\ {} & {} & {} \\\end{array}V_2 (k,1) = - \frac{1}{2}\delta (k - 2) = \{ \begin{array}{*{20}c} { - \frac{1}{2}} & {k = 2,} & {} \\ 0 & {k \ne 2,} & {} \\ {} & {} & {} \\\end{array} \\ V_3 (k,0) = 0,k = 0,1, \ldots ,V_1 (k,0) = V_2 (k,0) = V_3 (k,1) = \delta (k - 2) = \{ \begin{array}{*{20}c} 1 & {k = 2,} & {} \\ 0 & {k \ne 2,} & {} \\ {} & {} & {} \\\end{array}. \\ \end{array}

By using the differential inverse reduced transform of V1(k, h), V2(k, h) and V3(k, h), we getv1(x,t)=[11Γ(α+1)tα+6Γ(α+1)+28Γ(2α+1)t2α+54Γ(2α+1)+12Γ(α+1)96Γ(3α+1)t3α+50Γ(3α+1)54Γ(2α+1)192Γ(4α+1)t4α+330Γ(4α+1)+40Γ(3α+1)7680Γ(5α+1)t5α+66Γ(5α+1)+310Γ(4α+1)15360Γ(6α+1)t6α+1806Γ(6α+1)+84Γ(5α+1)1290240Γ(7α+1)t7α+770Γ(7α+1)1806Γ(6α+1)2580480Γ(8α+1)t8α+9234Γ(8α+1)+144Γ(7α+1)371589120Γ(9α+1)t9α+1026Γ(9α+1)+9198Γ(8α+1)743178240Γ(10α+1)t10α+45078Γ(10α+1)+220Γ(9α+1)163499212800Γ(11α+1)t11α(+]x2,v2(x,t)=[1+12Γ(α+1)2Γ(α+1)tα+Γ(α+1)4Γ(2α+1)t2α+27Γ(2α+1)+8Γ(3α+1)48Γ(3α+1)t3α+Γ(3α+1)96Γ(4α+1)t4α+155Γ(4α+1)32Γ(5α+1)3840Γ(5α+1)t5α+Γ(5α+1)7680Γ(6α+1)t6α+903Γ(6α+1)+128Γ(7α+1)645120Γ(7α+1)t7α+Γ(7α+1)1290240Γ(8α+1)t8α+4599Γ(8α+1)512Γ(9α+1)185794560Γ(9α+1)t9α+Γ(9α+1)371589120Γ(10α+1)t10α+22539Γ(10α+1)+2048Γ(11α+1)81749606400Γ(11α+1)t11α+]x2,v3(x,t)=[tα16t3α+1120t5α15040t7α+1362880t9α139916800t11α+16227020800t13α11307674368000t15α+1355687428096000t17α+1355687428096000t17α1121645100408832000t19α+]x2.[\begin{array}{l} v_1 (x,t) = [1 - \frac{1}{{\Gamma (\alpha + 1)}}t^\alpha + \frac{{6\Gamma (\alpha + 1) + 2}}{{8\Gamma (2\alpha + 1)}}t^{2\alpha } + \frac{{ - 54\Gamma (2\alpha + 1) + 12\Gamma (\alpha + 1)}}{{96\Gamma (3\alpha + 1)}}t^{3\alpha } \\ + \frac{{50\Gamma (3\alpha + 1) - 54\Gamma (2\alpha + 1)}}{{192\Gamma (4\alpha + 1)}}t^{4\alpha } + \frac{{ - 330\Gamma (4\alpha + 1) + 40\Gamma (3\alpha + 1)}}{{7680\Gamma (5\alpha + 1)}}t^{5\alpha } \\ + \frac{{66\Gamma (5\alpha + 1) + 310\Gamma (4\alpha + 1)}}{{15360\Gamma (6\alpha + 1)}}t^{6\alpha } + \frac{{ - 1806\Gamma (6\alpha + 1) + 84\Gamma (5\alpha + 1)}}{{1290240\Gamma (7\alpha + 1)}}t^{7\alpha } \\ + \frac{{770\Gamma (7\alpha + 1) - 1806\Gamma (6\alpha + 1)}}{{2580480\Gamma (8\alpha + 1)}}t^{8\alpha } + \frac{{ - 9234\Gamma (8\alpha + 1) + 144\Gamma (7\alpha + 1)}}{{371589120\Gamma (9\alpha + 1)}}t^{9\alpha } \\ + \frac{{1026\Gamma (9\alpha + 1) + 9198\Gamma (8\alpha + 1)}}{{743178240\Gamma (10\alpha + 1)}}t^{10\alpha } + \frac{{ - 45078\Gamma (10\alpha + 1) + 220\Gamma (9\alpha + 1)}}{{163499212800\Gamma (11\alpha + 1)}}t^{11\alpha } ( + \ldots ]x^2 , \\ v_2 (x,t) = [1 + \frac{{1 - 2\Gamma (\alpha + 1)}}{{2\Gamma (\alpha + 1)}}t^\alpha + \frac{{\Gamma (\alpha + 1)}}{{4\Gamma (2\alpha + 1)}}t^{2\alpha } + \frac{{ - 27\Gamma (2\alpha + 1) + 8\Gamma (3\alpha + 1)}}{{48\Gamma (3\alpha + 1)}}t^{3\alpha } \\ + \frac{{\Gamma (3\alpha + 1)}}{{96\Gamma (4\alpha + 1)}}t^{4\alpha } + \frac{{155\Gamma (4\alpha + 1) - 32\Gamma (5\alpha + 1)}}{{3840\Gamma (5\alpha + 1)}}t^{5\alpha } + \frac{{\Gamma (5\alpha + 1)}}{{7680\Gamma (6\alpha + 1)}}t^{6\alpha } \\ + \frac{{ - 903\Gamma (6\alpha + 1) + 128\Gamma (7\alpha + 1)}}{{645120\Gamma (7\alpha + 1)}}t^{7\alpha } + \frac{{\Gamma (7\alpha + 1)}}{{1290240\Gamma (8\alpha + 1)}}t^{8\alpha } \\ + \frac{{4599\Gamma (8\alpha + 1) - 512\Gamma (9\alpha + 1)}}{{185794560\Gamma (9\alpha + 1)}}t^{9\alpha } + \frac{{\Gamma (9\alpha + 1)}}{{371589120\Gamma (10\alpha + 1)}}t^{10\alpha } \\ + \frac{{ - 22539\Gamma (10\alpha + 1) + 2048\Gamma (11\alpha + 1)}}{{81749606400\Gamma (11\alpha + 1)}}t^{11\alpha } + \ldots ]x^2 , \\ v_3 (x,t) = [t^\alpha - \frac{1}{6}t^{3\alpha } + \frac{1}{{120}}t^{5\alpha } - \frac{1}{{5040}}t^{7\alpha } + \frac{1}{{362880}}t^{9\alpha } - \frac{1}{{39916800}}t^{11\alpha } \\ + \frac{1}{{6227020800}}t^{13\alpha } - \frac{1}{{1307674368000}}t^{15\alpha } + \frac{1}{{355687428096000}}t^{17\alpha } \\ + \frac{1}{{355687428096000}}t^{17\alpha } - \frac{1}{{121645100408832000}}t^{19\alpha } + \ldots ]x^2 . \\ \end{array}

For special case α = 1, the solution will be as follows:v1(x,t)=(1t+12t216t3+124t41120t5+1720t615040t7+140320t81362880t9+13628800t10139916800t11+)x2=x2et,v2(x,t)=(112t+18t2148t3+1384t413840t5+146080t61645120t7+110321920t81185794560t9+13715891200t10181749606400t11+)x2=x2et2,v3(x,t)=(t16t3+1120t515040t7+1362880t9139916800t11+16227020800t1311307674368000t15+1355687428096000t171121645100408832000t19+)x2=x2sin(t).[\begin{array}{l} v_1 (x,t) = (1 - t + \frac{1}{2}t^2 - \frac{1}{6}t^3 + \frac{1}{{24}}t^4 - \frac{1}{{120}}t^5 + \frac{1}{{720}}t^6 - \frac{1}{{5040}}t^7 + \frac{1}{{40320}}t^8 \\ - \frac{1}{{362880}}t^9 + \frac{1}{{3628800}}t^{10} - \frac{1}{{39916800}}t^{11} + \ldots )x^2 = x^2 e^{ - t} , \\ v_2 (x,t) = (1 - \frac{1}{2}t + \frac{1}{8}t^2 - \frac{1}{{48}}t^3 + \frac{1}{{384}}t^4 - \frac{1}{{3840}}t^5 + \frac{1}{{46080}}t^6 - \frac{1}{{645120}}t^7 \\ + \frac{1}{{10321920}}t^8 - \frac{1}{{185794560}}t^9 + \frac{1}{{3715891200}}t^{10} - \frac{1}{{81749606400}}t^{11} + \ldots )x^2 = x^2 e^{\frac{{ - t}}{2}} , \\ v_3 (x,t) = (t - \frac{1}{6}t^3 + \frac{1}{{120}}t^5 - \frac{1}{{5040}}t^7 + \frac{1}{{362880}}t^9 - \frac{1}{{39916800}}t^{11} + \frac{1}{{6227020800}}t^{13} \\ - \frac{1}{{1307674368000}}t^{15} + \frac{1}{{355687428096000}}t^{17} - \frac{1}{{121645100408832000}}t^{19} + \ldots )x^2 = x^2 sin(t). \\ \end{array}Which is the exact solution. v1(x, t), v2(x, t) and v3(x, t) are calculated for different values of α Numerical comparisons are given in Tables 2 , 3 , 4 . It is obvious that this is a numerical solution in Fig. 1 , we plot the numerical solutions given in Eq. (12) for α = 0.5, α = 0.75 and α = 1.

Numerical solution of v1(x, t)

xtv1FDTMfor α = 0.5v1FDTMfor α = 0.75v1FDTMfor α = 1v1Exact
0.010.010.000089597199410.000096629114150.00009900498330.00009900498337
0.020.020.00034310683240.00037763801660.00039207946940.0003920794693
0.030.030.00074723324260.00083263262730.00087340098020.0008734009802
0.040.040.0012931798640.0014530537080.0015372631030.001537263103
0.050.050.0019742251810.0022314084420.0023780735610.002378073561
0.060.060.0027849189050.0031609629630.0033903523210.003390352321
0.070.070.0037206867200.0042355723710.0045687297180.004568729718
0.080.080.0047776006410.0054495723030.0059079446180.005907944617
0.090.090.0059522316510.0067977035730.0074028426010.007402842601
0.10.10.0072415485600.0082750566510.0090483741810.009048374180

Numerical solution of v2(x, t)

xtv2FDTMfor α = 0.5v2FDTMfor α = 0.75v2FDTMfor α = 1v2Exact
0.010.010.00009583789020.00009857498860.000099501247920.0000995012479
0.020.020.00037683059370.00039048806490.00039601993350.0003960199335
0.030.030.00083685434040.00087118442600.00088660074560.0008866007456
0.040.040.0014714633030.0015368151440.0015683178770.001568317877
0.050.050.0019742251810.0022314084420.0023780735610.002378073561
0.060.060.0032501220110.0034093380650.0034936039210.003493603921
0.070.070.0043879939610.0046100740860.0047314665400.004731466540
0.080.080.0056878625250.0059833223780.0061490524100.006149052411
0.090.090.0071471722120.0075264042320.0044435796030.004443579603
0.10.10.0087634945800.0092367530300.00954122942450.0095412294245

Numerical solution of v3(x, t)

xtv3FDTMfor α = 0.5v3FDTMfor α = 0.75v3FDTMfor α = 1v3Exact
0.010.010.00000998334160.000003161750649.99983333 · 10−79.999833334 · 10−7
0.020.020.00005638016910.000021263156730.000007999466680.00000799946667
0.030.030.00015510631820.000064819738590.000026995950180.00002699595018
0.040.040.00031787092940.00014291761570.000063982934690.00006398293470
0.050.050.00055437015180.00026385051720.00012494792320.0001249479232
0.060.060.00087302456140.00043536310020.00021587042330.0002158704233
0.070.070.0012813461130.00066478045200.00034271995200.0003427199520
0.080.080.0017861538080.00095908787390.00051145404150.0005114540414
0.090.090.0023937136740.0013249845490.00072801624850.0007280162485
0.10.10.0031098359290.0017689218630.00099833416640.0009983341665

Fig. 1

Exact solution of v1(x, t).

Fig. 2

Values of v1(x, t) for α = 1.

Fig. 3

Values of v1(x, t) for α = 0.5.

Fig. 4

Values of v1(x, t) for α = 0.75.

Fig. 5

Exact solution of v2(x, t).

Fig. 6

Values of v2(x, t) for α = 1.

Fig. 7

Values of v2(x, t) for α = 0.5

Fig. 8

Values of v2(x, t) for α = 0.75.

Fig. 9

Exact solution of v3(x, t).

Fig. 10

Values of v3(x, t) for α = 1.

Fig. 11

Values of v3(x, t) for α = 0.5.

Fig. 12

Values of v3(x, t) for α = 0.75.

Conclusions

The generalized differential transformation method displayed in this work is an effective method for the numerical solution of a fractional partial differential-algebraic equation system. With full solutions, approximate solutions collected by the GDTM were compared to shapes and charts. On the other hand, the results are quite reliable for solving this problem. The exact closed-form solution was obtained for all the examples presented in this paper. FDTM offers an excellent opportunity for future research. As a result of this comparison, it is seen that the solutions obtained by the generalized differential transformation method are harmonious with the full solutions.

eISSN:
2444-8656
Lingua:
Inglese
Frequenza di pubblicazione:
Volume Open
Argomenti della rivista:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics