Accesso libero

Fault Diagnosis and Prognosis of Bearing Based on Hidden Markov Model with Multi-Features

INFORMAZIONI SU QUESTO ARTICOLO

Cita

A new approach to achieve fault diagnosis and prognosis of bearing based on hidden Markov model (HMM) with multi-features is proposed. Firstly, the time domain, frequency domain, and wavelet packet decomposition are utilized to extract the condition features of bearing vibration signals, and the PCA method is merged into multi-features to reduce their dimensionality. Then the low-dimensional features are processed to obtain the scalar probabilities of each bearing condition, which are multiplied to generate the observed values of HMM. The results reveal that the established approach can well diagnose fault conditions and achieve the remaining life estimation of bearing.

eISSN:
2444-8656
Lingua:
Inglese
Frequenza di pubblicazione:
Volume Open
Argomenti della rivista:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics