Accesso libero

Effect of sacubitril/valsartan on inflammation and oxidative stress in doxorubicin-induced heart failure model in rabbits

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. E. Tanai and S. Frantz, Pathophysiology of heart failure, Compr. Physiol. 6 (2015) 187–214; https://doi.org/10.1002/cphy.c14005510.1002/cphy.c14005526756631Search in Google Scholar

2. P. Anversa, P. Li, A. Malhotra, X. Zhang, M. V. Herman and J. M. Capasso, Effects of hypertension and coronary constriction on cardiac function, morphology, and contractile proteins in rats, Am. J. Physiol. 265 (1993) H713-H724; https://doi.org/10.1152/ajpheart.1993.265.2.H71310.1152/ajpheart.1993.265.2.H7138368372Search in Google Scholar

3. B. Vulesevic, M. G. Sirois, B. G. Allen, S. D. Denus and M. White, Subclinical inflammation in heart failure: A neutrophil perspective author links open overlay panel, Can. J. Cardiol. 34 (2018) 717–725; https://doi.org/10.1016/j.cjca.2018.01.01810.1016/j.cjca.2018.01.01829801737Search in Google Scholar

4. F. Piccirillo, M. Carpenito, G. Verolino, C. Chello, A. Nusca, M. Lusini, C. Spadaccio, F. Nappi, G. D. Sciascio and A. Nenna, Changes of the coronary arteries and cardiac microvasculature with aging: Implications for translational research and clinical practice, Mech. Ageing Dev. 184 (2019) 111161; https://doi.org/10.1016/j.mad.2019.11116110.1016/j.mad.2019.11116131647940Search in Google Scholar

5. P. Balakumar, A. P. Singh and M. Singh, Rodent models of heart failure, J. Pharmacol. Toxicol. Meth. 56 (2007) 1–10; https://doi.org/10.1016/j.vascn.2007.01.00310.1016/j.vascn.2007.01.00317391988Search in Google Scholar

6. Y. Matsuzawa and A. Lerman, Endothelial dysfunction and coronary artery disease: Assessment, prognosis and treatment, Coron. Art. Dis. 25 (2014) 713–724; https://doi.org/10.1097%2FMCA.000000000000017810.1097/MCA.0000000000000178422030125365643Search in Google Scholar

7. M. M. Alem, Endothelial dysfunction in chronic heart failure: assessment, findings, significance, and potential therapeutic targets, Int. J. Mol. Sci.20 (2019) Article ID 3198; https://doi.org/10.3390/ijms2013319810.3390/ijms20133198665153531261886Search in Google Scholar

8. M. Endoh, Amrinone, Forerunner of novel cardiotonic agents, caused paradigm shift of heart failure pharmacotherapy, Circul. Res. 113 (2013) 358–361; https://doi.org/10.1161/CIRCRESAHA.113.30168910.1161/CIRCRESAHA.113.30168923908328Search in Google Scholar

9. S. Steven, K. Frenis, M. Oelze, S. Kalinovic, M. Kuntic, M. T. B. Jimenez, K. Vujacic-Mirski, J. Helm-städter, S. Kröller-Schön, T. Münzel and A. Daiber, Vascular inflammation and oxidative stress: Major triggers for cardiovascular disease, Oxid. Med. Cell. Longev. 2019 (2019) Article ID 7092151 (26 pages); https://doi.org/10.1155/2019/709215110.1155/2019/7092151661239931341533Search in Google Scholar

10. J. Habibi, A. R. Aroor, N. A. Das, C. M. Manrique-Acevedo, M. S. Johnson, M. R. Hayden, R. Nistala, C. Wiedmeyer, B. Chandrasekar and V. G. DeMarco, The combination of a neprilysin inhibitor (sacubitril) and angiotensin-II receptor blocker (valsartan) attenuates glomerular and tubular injury in the Zucker Obese rat, Cardiovasc. Diabetol. 18 (2019) Article ID 40; https://doi.org/10.1186/s12933-019-0847-810.1186/s12933-019-0847-8643276030909895Search in Google Scholar

11. S. Yandrapalli, M. H. Khan, Y. Rochlani and W. S. Aronow, Sacubitril/valsartan in cardiovascular disease: evidence to date and place in therapy, Ther. Adv. Cardiovasc Dis. 12 (2018) 217–231; 10.1177/175394471878453610.1177/1753944718784536Search in Google Scholar

12. P. V. M. Romão, R. A. C. Palozi, L. P. Guarnier, A. O. Silva, B. R. Lorençone, S. R. Nocchi, C. C. de Freitas Sari Moura, E. L. B. Lourenço, D. B. Silva and A. Gasparotto Junior, Cardioprotective effects of Plinia cauliflora (Mart.) Kausel in a rabbit model of doxorubicin-induced heart failure, J. Ethnopharmacol.242 (2019) Article ID 112042; https://doi.org/10.1016/j.jep.2019.11204210.1016/j.jep.2019.112042Search in Google Scholar

13. R. K. Trivedi, D. J. Polhemus, Z. Li, D. Yoo, H. Koiwaya, A. Scarborough, T. T. Goodchild and D. J. Lefer, Combined angiotensin receptor–neprilysin inhibitors improve cardiac and vascular function via increased no bioavailability in heart failure, J. Am. Heart Assoc. 7 (2018) e008268; https://doi.org/10.1161/JAHA.117.00826810.1161/JAHA.117.008268Search in Google Scholar

14. C. W. Yancy, M. Jessup, B. Bozkurt, J. Butler, D. E. Casey, M. M. Colvin, M. H. Drazner, G. S. Filippatos, G. C. Fonarow, M. M. Givertz, S. M. Hollenberg, J. Lindenfeld, F. A. Masoudi, P. E. McBride, P. N. Peterson, L. W. Stevenson and C. Westlake, 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America, Circulation136 (2017) e137–e161; https://doi.org/10.1161/CIR.000000000000050910.1161/CIR.0000000000000509Search in Google Scholar

15. Y. Suematsu, S. Miura, M. Goto, Y. Matsuo, T. Arimura, T. Kuwano, S. Imaizumi, A. Iwata, E. Yahiro and K. Saku, LCZ696, an angiotensin receptor-neprilysin inhibitor, improves cardiac function with the attenuation of fibrosis in heart failure with reduced ejection fraction in streptozotocin-induced diabetic mice, Eur. J. Heart Fail. 18 (2016) 386–393; https://doi.org/10.1002/ejhf.47410.1002/ejhf.474Search in Google Scholar

16. Q.-Y. Zhao, C.-X. Huang, H. Jiang, E. Okello, X. Wang, Y.-H. Tang and G.-S. Li, Acetylcholine-regulated K+ current remodelling in the atrium after myocardial infarction and valsartan administration, Can. J. Cardiol.25 (2009) e115-8; https://doi.org/10.1016/s0828-282x(09)70069-810.1016/S0828-282X(09)70069-8Search in Google Scholar

17. J. V. J. McMurray, M. Packer, A. S. Desai, J. Gong, M. P. Lefkowitz, A. R. Rizkala, J. L. Rouleau, V. C. Shi, S. D. Solomon, K. Swedberg and M. R. Zile, Angiotensin-neprilysin inhibition versus enal-april in heart failure, N. Engl. J Med. 371 (2014) 993–1004; https://doi.org/10.1056/NEJMoa140907710.1056/NEJMoa140907725176015Search in Google Scholar

18. A. Strigli, C. Raab, S. Hessler, T. Huth, A. J. T. Schuldt, C. Alzheimer, T Friedrich, P. W. Burridge, M. Luedde and M. Schwake, Doxorubicin induces caspase-mediated proteolysis of KV7.1, Commun. Biol. 1 (2018) Article ID 155; https://doi.org/10.1038/s42003-018-0162-z10.1038/s42003-018-0162-z616225830302399Search in Google Scholar

19. G. Tse, Mechanisms of cardiac arrhythmias, J. Arrhythm. 32 (2016) 75–81; https://doi.org/10.1016/j.joa.2015.11.00310.1016/j.joa.2015.11.003482358127092186Search in Google Scholar

20. J. Zheng, L. H. C. Michelle, M. M. B. Sattar, Y. Huang and J. S. Bian, Cardioprotective effects of epigallocatechin-3-gallate against doxorubicin-induced cadiomyocyte injury, Eur. J. Pharmacol. 652 (2011) 82–88; https://doi.org/10.1016/j.ejphar.2010.10.08210.1016/j.ejphar.2010.10.08221114975Search in Google Scholar

21. E. K. C. Kong, Y. Huang, J. E. Sanderson, K. B. Chen, S. Yu and C. M. Yu, A novel anti-fibrotic agent, baicalein for the treatment of myocardial fibrosis in spontaneously hypertensive rats, Eur. J. Pharmacol. 658 (2011) 175–181; https://doi.org/10.1016/j.ejphar.2011.02.03310.1016/j.ejphar.2011.02.03321371455Search in Google Scholar

22. M. Imran, M. D. Quamrul Hassan, M. D. S. Akhtar, O. Rahman, M. Akhtar and A. K. Najmi, Sacubitril and valsartan protect from experimental myocardial infarction by ameliorating oxidative damage in Wistar rats, Clin. Exp. Hypert. 41 (2017) 62–69; https://doi.org/10.1080/10641963.2018.144186210.1080/10641963.2018.144186229595329Search in Google Scholar

23. E. De Angelis, M. Pecoraro, M. R. Rusciano, M. Ciccarelli and A. Popolo, Cross-talk between neurohormonal pathways and the immune system in heart failure: A review of the literature, Int. J. Mol. Sci.20 (2019) Article ID 1698; https://doi.org/10.3390/ijms2007169810.3390/ijms20071698648026530959745Search in Google Scholar

24. P. M Ridker, E. Danielson, N. Rifai and R. J. Glynn, Valsartan, blood pressure reduction, and C-reactive protein – primary report of the Val-MARC trial, Hypertension48 (2006) 73–79; https://doi.org/10.1161/01.HYP.0000226046.58883.3210.1161/01.HYP.0000226046.58883.3216714425Search in Google Scholar

25. S. Toyoda, A. Haruyama, S. Inami, T. Arikawa, F. Saito, R. Watanabe, M. Sakuma, S. Abe, T. Nakajima, A. Tanaka, K. Node and T. Inoue, Effects of carvedilol vs bisoprolol on inflammation and oxidative stress in patients with chronic heart failure, J. Cardiol. 75 (2020) 140–147; https://doi.org/10.1016/j.jjcc.2019.07.01110.1016/j.jjcc.2019.07.01131444140Search in Google Scholar

26. W. Szczurek and B. S. Jurkiewicz, Oxidative stress and inflammatory markers – the future of heart failure diagnostics?, Kardiochir. Torakochir. Pol.12 (2015) 145–149; https://doi.org/10.5114%2Fkitp.2015.52856Search in Google Scholar

27. W. Jing, N. D. Vaziri, A. Nunes, Y. Suematsu, T. Farzaneh, M. Khazaeli and H. Moradi, LCZ696 (sacubitril/valsartan) ameliorates oxidative stress, inflammation, fibrosis and improves renal function beyond angiotensin receptor blockade in CKD, Am. J. Transl. Res. 9 (2017) 5473–5484.Search in Google Scholar

eISSN:
1846-9558
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Pharmacy, other