INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. P. J. Thornalley, The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life, Biochem. J. 269 (1990) 1–11.Search in Google Scholar

2. M. Sousa Silva, R. A. Gomes, A. E. N. Ferreira, A. P. Freire and C. Cordeiro, The glyoxalase pathway: the first hundred years… and beyond, Biochem. J. 453 (2013) 1–15; https://doi.org/10.1042/bj2012174310.1042/BJ20121743Search in Google Scholar

3. A. Rulli, L. Carli, R. Romani, T. Baroni, E. Giovannini, G. Rosi and V. Talesa, Expression of glyoxalase I and II in normal and breast cancer tissues, Breast Cancer Res. Treat. 66 (2001) 67–72; https://doi.org/10.1023/a:101063291912910.1023/A:1010632919129Search in Google Scholar

4. E. Mearini, R. Romani, L. Mearini, C. Antognelli, A. Zucchi, T. Baroni, M. Porena and V. N. Talesa, Differing expression of enzymes of the glyoxalase system in superficial and invasive bladder carcinomas, Eur. J. Cancer38 (2002) 1946–1950; https://doi.org/10.1016/S0959-8049(02)00236-810.1016/S0959-8049(02)00236-8Search in Google Scholar

5. P. J. Thornalley, The glyoxalase system in health and disease, Mol. Aspects Med.14 (1993) 287–371; https://doi.org/10.1016/0098-2997(93)90002-U10.1016/0098-2997(93)90002-USearch in Google Scholar

6. Q. Al-Balas, M. Hassan, B. Al-Oudat, H. Alzoubi, N. Mhaidat and A. Almaaytah, Generation of the first structure-based pharmacophore model containing a selective “zinc binding group” feature to identify potential glyoxalase-I inhibitors, Molecules17 (2012) 13740–13758; https://doi.org/10.3390/molecules17121374010.3390/molecules171213740626817123174893Search in Google Scholar

7. A. N. Al-Shar’i, M. Hassan, Q. Al-Balas and A. Almaaytah, Identification of possible glyoxalase II inhibitors as anticancer agents by a customized 3D structure-based pharmacophore model, Jordan J. Pharm. Sci. 8 (2015) 83–103.10.12816/0025734Search in Google Scholar

8. A. D. Cameron, B. Olin, M. Ridderström, B. Mannervik and T. A. Jones, Crystal structure of human glyoxalase I - evidence for gene duplication and 3D domain swapping, EMBO J. 16 (1997) 3386–3395; https://doi.org/10.1093/emboj/16.12.338610.1093/emboj/16.12.338611699649218781Search in Google Scholar

9. Q. A. Al-Balas, M. A. Hassan, N. A. Al-Shar’i, N. M. Mhaidat, A. M. Almaaytah, F. M. Al-Mahasneh, and I. H. Isawi, Novel glyoxalase-I inhibitors possessing a “zinc-binding feature” as potential anti-cancer agents, Drug Des. Dev. Ther.10 (2016) 2623–2629; https://doi.org/10.2147/DDDT.S11099710.2147/DDDT.S110997499325727574401Search in Google Scholar

10. Q. A. Al-Balas, A. M. Hassan, G. A. Al Jabal, N. A. Al-Shar’i, A. M. Almaaytah and T. El-Elimat, Novel thiazole carboxylic acid derivatives possessing a “zinc binding feature” as potential human glyoxalase-I inhibitors, Lett. Drug Des. Discov.14 (2017) 1324–1334; https://doi.org/10.2174/157018081466617030612095410.2174/1570180814666170306120954Search in Google Scholar

11. Q. A. Al-Balas, M. A. Hassan, N. A. Al-Shar’i, T. El-Elimat and A. M. Almaaytah, Computational and experimental exploration of the structure–activity relationships of flavonoids as potent glyoxalase-I inhibitors, Drug Dev. Res. 79 (2018) 58–69; https://doi.org/10.1002/ddr.2142110.1002/ddr.2142129285772Search in Google Scholar

12. Q. Al-Balas, N. Al-Shar’i, K. Banisalman, M. Hassan, G. A. Jabal and A. Almaaytah, Design, synthesis and biological evaluation of potential novel zinc binders targeting human glyoxalase-I; A validated target for cancer treatment, Jordan J. Pharm. Sci. 11 (2018) 25–37.Search in Google Scholar

13. Q. A. Al-Balas, M. A. Hassan, N. A. Al-Shar’i, G. A. Al Jabal and A. M. Almaaytah, Recent advances in glyoxalase-I inhibition, Mini-Rev. Med. Chem.19 (2019) 281–291; https://doi.org/10.2174/138955751866618100914123110.2174/138955751866618100914123130306863Search in Google Scholar

14. N. A. Al-Shar’i, Q. A. Al-Balas, R. A. Al-Waqfi, M. A. Hassan, A. E. Alkhalifa and N. M. Ayoub, Discovery of a nanomolar inhibitor of the human glyoxalase-I enzyme using structure-based polypharmacophore modelling and molecular docking, J. Comput. Aid. Mol. Des. 33 (2019) 799–815; https://doi.org/10.1007/s10822-019-00226-810.1007/s10822-019-00226-831630312Search in Google Scholar

15. N. A. Al-Shar’i, E. K. Al-Rousan, L. I. Fakhouri, Q. A. Al-Balas and M. A. Hassan, Discovery of a nanomolar glyoxalase-I inhibitor using integrated ligand-based pharmacophore modeling and molecular docking, Med. Chem. Res. 29 (2020) 356–376; https://doi.org/10.1007/s00044-019-02486-310.1007/s00044-019-02486-3Search in Google Scholar

16. B. R. Brooks, C. L. Brooks, A. D. MacKerell, L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York and M. Karplus, CHARMM: The biomolecular simulation program, J. Comput. Chem. 30 (2009) 1545–1614; https://doi.org/10.1002/jcc.2128710.1002/jcc.21287281066119444816Search in Google Scholar

17. M. S. Lee, M. Feig, F. R. Salsbury and C. L. Brooks, New analytic approximation to the standard molecular volume definition and its application to generalized Born calculations, J. Comput. Chem. 24 (2003) 1348–1356; https://doi.org/doi:10.1002/jcc.1027210.1002/jcc.1027212827676Search in Google Scholar

18. P. Mark and L. Nilsson, Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K, J. Phys. Chem. A105 (2001) 9954–9960; https://doi.org/10.1021/jp003020w10.1021/jp003020wSearch in Google Scholar

19. I. Štich, R. Car, M. Parrinell and S. Baroni, Conjugate gradient minimization of the energy functional: A new method for electronic structure calculation, Phys. Rev. B39 (1989) 4997–5004; https://doi.org/10.1103/PhysRevB.39.499710.1103/PhysRevB.39.4997Search in Google Scholar

20. G. Wu, D. H. Robertson, C. L. Brooks and M. Vieth, Detailed analysis of grid-based molecular docking: A case study of CDOCKER—A CHARMm-based MD docking algorithm, J. Comput. Chem. 24 (2003) 1549–1562; https://doi.org/10.1002/jcc.1030610.1002/jcc.1030612925999Search in Google Scholar

21. R. Takasawa, H. Akahane, H. Tanaka, N. Shimada, T. Yamamoto, H. Uchida-Maruki, M. Sai, A. Yoshimori and S.-i. Tanuma, Piceatannol, a natural trans-stilbene compound, inhibits human glyoxalase I, Bioorg. Med. Chem. Lett.27 (2017) 1169–1174; https://doi.org/10.1016/j.bmcl.2017.01.07010.1016/j.bmcl.2017.01.07028169168Search in Google Scholar

22. A. Z. Simić, T. Ž. Verbić, M. N. Sentić, M. P. Vojić, I. O. Juranić and D. D. Manojlović, Study of ellagic acid electro-oxidation mechanism, Monatsh. Chem. Chem. Mon. 144 (2013) 121–128; https://doi.org/10.1007/s00706-012-0856-810.1007/s00706-012-0856-8Search in Google Scholar

23. Z. Marković, D. Milenković, J. Đorović, J. M. Dimitrić Marković, B. Lučić and D. Amić, A DFT and PM6 study of free radical scavenging activity of ellagic acid, Monatsh. Chem. Chem. Mon.144 (2013) 803–812; https://doi.org/10.1007/s00706-013-0949-z10.1007/s00706-013-0949-zSearch in Google Scholar

24. Y. Yao, G. Lin, Y. Xie, P. Ma, G. Li, Q. Meng and T. Wu, Preformulation studies of myricetin: a natural antioxidant flavonoid, Pharmazie69 (2014) 19–26.Search in Google Scholar

25. R. S. Mulliken, Electronic population analysis on LCAO–MO molecular wave functions. I, J. Chem. Phys. 23 (1955) 1833–1840; https://doi.org/10.1063/1.174058810.1063/1.1740588Search in Google Scholar

26. F. L. Hirshfeld, Bonded-atom fragments for describing molecular charge densities, Theor. Chim. Acta44 (1977) 129–138; https://doi.org/10.1007/bf0054909610.1007/BF00549096Search in Google Scholar

27. H. F. P. Martins, J. P. Leal, M. T. Fernandez, V. H. C. Lopes and M. N. D. S. Cordeiro, Toward the prediction of the activity of antioxidants: experimental and theoretical study of the gas-phase acidities of flavonoids, J. Am. Soc. Mass Spectrom. 15 (2004) 848–861; https://doi.org/10.1016/j.jasms.2004.02.00710.1016/j.jasms.2004.02.007Search in Google Scholar

28. G. Günther, E. Berríos, N. Pizarro, K. Valdés, G. Montero, F. Arriagada and J. Morales, Flavonoids in microheterogeneous media, relationship between their relative location and their reactivity towards singlet oxygen, PLoS ONE10 (2015) e0129749; https://doi.org/10.1371/journal.pone.012974910.1371/journal.pone.0129749Search in Google Scholar

29. B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules, J. Chem. Phys.92 (1990) 508–517; https://doi.org/10.1063/1.45845210.1063/1.458452Search in Google Scholar

30. T. Lengauer and M. Rarey, Computational methods for biomolecular docking, Curr. Opin. Struct. Biol.6 (1996) 402–406; https://doi.org/10.1016/S0959-440X(96)80061-310.1016/S0959-440X(96)80061-3Search in Google Scholar

31. P. Ferrara, H. Gohlke, D. J. Price, G. Klebe and C. L. Brooks, Assessing Scoring functions for protein-ligand interactions, J. Med. Chem.47 (2004) 3032–3047; https://doi.org/10.1021/jm030489h10.1021/jm030489h15163185Search in Google Scholar

32. S. Genheden and U. Ryde, The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities, Expert Opin. Drug Discov.10 (2015) 449–461; https://doi.org/10.1517/17460441.2015.103293610.1517/17460441.2015.1032936448760625835573Search in Google Scholar

33. S. Matić, M. Jadrijević-Mladar Takač, M. Barbarić, B. Lučić, K. Gall Trošelj and V. Stepanić, The influence of in vivo metabolic modifications on ADMET properties of green tea catechins – In silico analysis, J. Pharm. Sci. 107 (2018) 2957–2964; https://doi.org/10.1016/j.xphs.2018.07.02610.1016/j.xphs.2018.07.02630077700Search in Google Scholar

34. N. J. Cox, Speaking stata: Correlation with confidence, or Fisher’s z revisited, Stata J. 8 (2008) 413–439; https://ageconsearch.umn.edu/record/122603Search in Google Scholar

35. D. A. Vattem and K. Shetty, Biological functionality of ellagic acid: a review, J. Food Biochem. 29 (2005) 234–266; https://doi.org/10.1111/j.1745-4514.2005.00031.x10.1111/j.1745-4514.2005.00031.xSearch in Google Scholar

36. J. M. Landete, Ellagitannins, ellagic acid and their derived metabolites: A review about source, metabolism, functions and health, Food Res. Int.44 (2011) 1150–1160; https://doi.org/10.1016/j.foodres.2011.04.02710.1016/j.foodres.2011.04.027Search in Google Scholar

eISSN:
1846-9558
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Pharmacy, other