INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Boyer JS. Plant productivity and environment. Science 1982; 218: 443-448.10.1126/science.218.4571.44317808529Search in Google Scholar

2. Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol 2008; 59: 651-681.10.1146/annurev.arplant.59.032607.09291118444910Search in Google Scholar

3. IPCC. Intergovernmental panel on climate change, 5th Assessment Report. WGII, Clim. Chang.: Impacts, adaptation, and vulnerability. 2014. http://www.ipcc.ch/report/ar5/wg2/.Search in Google Scholar

4. Morton JF. The impact of climate change on smallholder and subsistence agriculture. Proc Natl Acad Sci USA 2007; 104: 19680-19685.10.1073/pnas.0701855104214835718077400Open DOISearch in Google Scholar

5. Fita A, Rodríguez-Burruezo A, Boscaiu M, Prohens J, Vicente O. Breeding and domesticating crops adapted to drought and salinity: A new paradigm for increasing food production. Front Plant Sci 2015; 6(273). doi: 10.3389/fpls.2015.00978.Search in Google Scholar

6. Varshney RK, Nayak SN, May GD, Jackson SA. Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 2009; 27: 522-530. 10.1016/j.tibtech.2009.05.00619679362Open DOISearch in Google Scholar

7. Ceccarelli S., Grando S, Impiglia A. Choice of selection strategy in breeding barley for stress environments. Euphytica 1988; 103: 307-318. 10.1023/A:1018647001429Search in Google Scholar

8. Blair MW, Soler A, Cortés AJ. Diversification and population structure in common beans (Phaseolus vulgaris L.). PLoS ONE 2012; 7: e49488. doi:10.1371/journal.pone.0049488. Search in Google Scholar

9. Broughton WJ, Hernández G, Blair M, Beebe S, Gepts P, Vanderleyden J. Beans (Phaseolus spp.) – Model food legumes. Plant Soil 2003; 252: 55-128. 10.1023/A:1024146710611Search in Google Scholar

10. Gepts P, Debouck DG. Origin, domestication, and evolution of the common bean, Phaseolus vulgaris. In: Van Schoonhoven A, Voysest O, eds. Common Beans: Research for Crop Improvement. 1991. Cab Intern, Wallingford, Oxon, pp 7-53. Search in Google Scholar

11. Bellucci E, Bitocchi E, Rau D, Rodriguez M, Biagetti E, Giardini A, Attene G, Nanni L, Papa R. Genomics of origin, domestication and evolution of Phaseolus vulgaris. In: Tuberosa R, Graner A, Frison E, eds. Genomics of Plant Genetics Resources. 2014.Dordrecht: Springer, 483-507. Search in Google Scholar

12. Vargas Vázquez MLP, Muruaga Martínez JS, Lépiz Ildefonso R, Pérez Guerrero A. The INIFAP collection of runner bean (Phaseolus coccineus L.) I. Geographical distribution of collection sites. Rev Mex Cienc Agric 2012; 3:1247-1259. Search in Google Scholar

13. Szilagyi, L. Influence of drought on seed yield components in common bean. Bulgarian J Plant Physiol 2003; Special issue: 320- 330. Search in Google Scholar

14. Namugwanya M, Tenywa JS, Otabbong E, Mubiru D, Basamba TA. Development of common bean (Phaseolus vulgaris L.) production under low soil phosphorus and drought in Sub-Saharan Africa: a review. J Sustain Dev 2014; 7: 128-139. 10.5539/jsd.v7n5p128Search in Google Scholar

15. Al Hassan M, Morosan M, Lopez-Gresa M., Prohens J, Vicente O, Boscaiu M. Salinity-Induced variation in biochemical markers provides insight into the mechanisms of salt tolerance in common (Phaseolus vulgaris) and runner (P. coccineus) beans. Int J Mol Sci 2016; 17(9): 1582; doi:10.3390/ijms17091582. Search in Google Scholar

16. Hoagland DR, Arnon DI. The water-culture method for growing plants without soil. Circular California Agricultural Experiment Station 1950; 34: 32-63. Search in Google Scholar

17. Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water stress studies. Plant and Soil 1973; 39: 205-207. 10.1007/BF00018060Search in Google Scholar

18. Grieve CM, Grattan SR. Rapid assay for the determination of water soluble quaternary ammonium compounds. Plant Soil 1983; 70: 303-307. 10.1007/BF02374789Open DOISearch in Google Scholar

19. Dubois M, Gilles KA, Hamilton JK, Reberd PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem 1956; 28: 350-356. doi:10.1021/ac60111a017 Search in Google Scholar

20. Zhu J-K. Plant salt tolerance. Trends Plant Sci 2001; 6: 66-71. 10.1016/S1360-1385(00)01838-0Open DOISearch in Google Scholar

21. Subbarao GV, Johansen C. Potential for genetic improvement in salinity tolerance in legumes: Pigeon Pea. In: Pessarakli M (ed) Handbook of Plants and Crop Stress. 1994. Marcel Dekker Inc, New York, pp 581-595. Search in Google Scholar

22. Gutierrez M, Escalante-Estrada JA, Rodriguez-Gonzalez MT. Differences in salt tolerance between Phaseolus vulgaris and P. coccineus cultivars. Int J Agric Res 2009; 4: 270-278. 10.3923/ijar.2009.270.278Search in Google Scholar

23. Ashraf M, Iram A. Drought stress induced changes in some organic substances in nodules and other plant parts of two potential legumes differing in salt tolerance. Flora 2005; 200: 535-546. 10.1016/j.flora.2005.06.005Search in Google Scholar

24. Svetleva D, Krastev V, Dimova D, Mitrovska Z, Miteva D, Parvanova P, Chankova S. Drought tolerance of Bulgarian common bean genotypes, characterised by some biochemical markers for oxidative stress. Cent Eur Agr J 2012; 13: 349-361. 10.5513/JCEA01/13.2.1059Search in Google Scholar

25. Ghanbari AA, Mousavi SH, Mousapou Gorji A, Rao I. Effects of water stress on leaves and seeds of bean (Phaseolus vulgaris L.). Turk J Field Crops 2013; 18: 73-77. Search in Google Scholar

26. Rosales MA, Ocampo E, Rodríguez-Valentín R, Olvera-Carrillo Y, Acosta-Gallegos J, Covarrubias AA. Physiological analysis of common bean (Phaseolus vulgaris L.) cultivars uncovers characteristics related to terminal drought resistance. Plant Physiol Biochem 2012; 56: 24-34. doi: 10.1016/j.plaphy.2012.04.007. Search in Google Scholar

27. Ashraf M, Foolad MR. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Env Exp Bot 2007; 59: 206-216. 10.1016/j.envexpbot.2005.12.006Search in Google Scholar

28. Ali AA, Abdel-Fattah RI. Osmolytes-antioxidant behavior in Phaseolus vulgaris and Hordeum vulgare with brassinosteroid under salt stress. J Agron 2006; 5: 167-174. 10.3923/ja.2006.167.174Search in Google Scholar

29. Gil R, Boscaiu M, Lull C, Bautista I, Lidón A, Vicente O. Are soluble carbohydrates ecologically relevant for salt tolerance in halophytes? Funct Plant Biol 2013; 40: 805-818. Search in Google Scholar

30. Sassi S, Aydi S, Gonzalez EM, Arrese-Igor C, Abdelly C. Understanding osmotic stress tolerance in leaves and nodules of two Phaseolus vulgaris cultivars with contrasting drought tolerance. Symbiosis 2010; 52: 1-10. 10.1007/s13199-010-0091-1Open DOISearch in Google Scholar

31. Vassey TL, Sharkey T. Mild water stress of Phaseolus vulgaris plants leads to reduced starch synthesis and extractable sucrose phosphate synthase activity. Plant Physiol 1989; 89: 1066-1070. 10.1104/pp.89.4.1066105597616666665Search in Google Scholar

32. Cuellar-Ortiz SM, Arrieta-Montiel MP, Acosta-Gallegos J, Covarrubias AA. Relationship between carbohydrate partitioning and drought resistance in common bean. Plant Cell Environ 2008; 31:1399-1409. 10.1111/j.1365-3040.2008.01853.x18643951Open DOISearch in Google Scholar

33. Santos MG, Ribeiro RV, Machado EC, Pimentel C. Photosynthetic parameters and leaf water potential of five common bean genotypes under mild water deficit. Biol Plant 2009; 53: 229-236. 10.1007/s10535-009-0044-9Search in Google Scholar

34. Omae E, Kumar A, Shono M. Adaptation to high temperature and water deficit in the common bean (Phaseolus vulgaris L.) during the reproductive period. J Bot 2012; Article ID 803413. doi:10.1155/2012/803413. Search in Google Scholar

35. Beebe SE, Rao IM, Blair MW, Acosta-Gallegos JA. Phenotyping common beans for adaptation to drought. Front Physiol 2013; 4(35). doi: 10.3389/fphys.2013.00035.Search in Google Scholar

eISSN:
2564-615X
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Genetics, Biotechnology, Bioinformatics, other