INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Mingyang Li, Wanzhong Chen, Tao Zhang, Automatic epilepsy detection using wavelet-based nonlinear analysis and optimized SVM, Biocybernetics and biomedical engineering 235 (2016)281–289Search in Google Scholar

2. Yatindra Kumar, M.L. Dewal, R.S. Anand, Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine, Neurocomputing 133 (2014) 271–279.10.1016/j.neucom.2013.11.009Search in Google Scholar

3. Yilmaz Kaya, Murat Uyar, Ramazan Tekin, Selçuk Yildirim, 1D-local binary pattern based feature extraction for classification of epileptic EEG signals, Applied Mathematics and Computation 243 (2014) 209–21910.1016/j.amc.2014.05.128Search in Google Scholar

4. WHO. Media Centre, Epilepsy, Fact Sheet. <http://www.who.int/mediacentre/factsheets/fs999/en/> (accessed 2013).Search in Google Scholar

5. NINDS. Seizure and Epilepsy: Hope Through Research. National Institute of Neurological Disorders Available from: <http://www.ninds.nih.gov/disorders/epilepsy/detail_epilepsy.htm>. (accessed 2013).Search in Google Scholar

6. S.G. Dastidar, H. Adeli, N. Dadmehr, Mixed band wavelet- chaos-neural network methodology for epilepsy and epileptic seizure detection, IEEE Trans. Biomed. Eng. 54 (9) (2007) 1545–1551.10.1109/TBME.2007.891945Open DOISearch in Google Scholar

7. H. Adeli, Z. Zhou, N. Dadmehr, Analysis of EEG records in an epileptic patient using wavelet transform, J. Neurosci. Method 123 (1) (2003) 69–87.10.1016/S0165-0270(02)00340-0Search in Google Scholar

8. J. Gotman, D. Flanagah, J. Zhang, B. Rosenblatt, Automatic seizure detection in the newborn: methods and initial evaluation, Electroencephalogr. Clin. Neurophysiol. 103 (1997) 356–362.10.1016/S0013-4694(97)00003-9Search in Google Scholar

9. O.A. Rosso, S. Blanco, A. Rabinowicz, Wavelet analysis of generalized tonic–clonic epileptic seizures, Signal Process. 83 (2003) 1275–1289.10.1016/S0165-1684(03)00054-9Open DOISearch in Google Scholar

10. R.G. Andrzejak, K. Lehnertz, C Rieke, Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: dependence on recording region and brain state, Phys. Rev. E 64 (6) (2001) 061907 (1–8).Search in Google Scholar

11. H. Adeli, S.G. Dastidar, N. Dadmehr, A wavelet-chaos methodology for analysis of EEGs and EEG sub-bands to detect seizure and epilepsy, IEEE Trans. Biomed. Eng. 54 (2) (2007) 205–211.10.1109/TBME.2006.88685517278577Open DOISearch in Google Scholar

12. K.C. Hsu, S.N. Yu, Detection of seizures in EEG using sub-band nonlinear parameters and genetic algorithm, Comput. Biol. Med. 40 (2010) 823–830.10.1016/j.compbiomed.2010.08.00520832782Open DOISearch in Google Scholar

13. S.M. Pincus, Approximate entropy as a measure of system complexity, Proc.Natl. Acad. Sci. USA 88 (1991) 2297–2301.10.1073/pnas.88.6.22975121811607165Open DOISearch in Google Scholar

14. N. Radhakrishnan, B. Gangadhar, Estimating regularity in epileptic seizure time-series data: a complexity-measure approach, IEEE Eng. Med. Biol. 17 (3) (1998) 89 94.10.1109/51.6771749604706Open DOISearch in Google Scholar

15. L. Diambra, J. Figueiredo, C. Malta, Epileptic activity recognition in EEG recording, Phys. A: Stat. Mech. Appl. 273 (3 and 4) (1999) 495–505.10.1016/S0378-4371(99)00368-4Search in Google Scholar

16. W. Chen, J. Zhuang, W. Yu, Z. Wang, Measuring complexity using FuzzyEn, ApEn and SampEN, Med. Eng. Phys. 31 (2009) 61–68.10.1016/j.medengphy.2008.04.00518538625Open DOISearch in Google Scholar

17. H.B Xie, Z.M. Gao, H. Liu, Classification of ventricular tachycardia and fibrillation using fuzzy similarity based approximate entropy, Expert Syst. Appl. 38 (2011) 3973–3981.10.1016/j.eswa.2010.09.058Open DOISearch in Google Scholar

18. H. Ocak, Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy, Expert Syst. Appl. 36 (5) (2009) 2027–2036.10.1016/j.eswa.2007.12.065Search in Google Scholar

19. L. Guo, D. Riveer, A. Pazaos, Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks, J. Neurosci. Methods 193 (2010) 156–163.10.1016/j.jneumeth.2010.08.03020817036Search in Google Scholar

20. V. Srinivasan, C. Eswaran, N. Sriraam, Artificial neural network based epileptic detection using time-domain and frequency-domain features, J. Med. Syst. 29 (6) (2005) 647–660.10.1007/s10916-005-6133-116235818Open DOISearch in Google Scholar

21. V. Srinivasan, C. Eswaran, N. Sriraam, Approximate entropy based epileptic EEG detection using artificial neural networks, IEEE Trans. Inf. Technol. Biomed. 11 (3) (2007) 288–295.10.1109/TITB.2006.884369Open DOISearch in Google Scholar

22. Q. Yuan, W. Zhou, S. Li, D. Cai, Epileptic EEG classification based on extreme learning machine and nonlinear features, Epilepsy Res. 96 (2011) 29–38.10.1016/j.eplepsyres.2011.04.01321616643Open DOISearch in Google Scholar

23. N. Nicolaou, J. Georgiou, Detection of epileptic electroencephalogram based on permutation entropy and support vector machine, Expert Syst. Appl. 39 (2012) 202–209.10.1016/j.eswa.2011.07.008Search in Google Scholar

24. U.R. Acharya, F. Molinari, S.V. Sree, S. Chattopadhyay, Automatic diagnosis of epileptic EEG using entropies, Biomed. Signal Process. Control 7 (4) (2012) 401–408.10.1016/j.bspc.2011.07.007Search in Google Scholar

25. E.D. Ubeyli, Least square support vector machine employing model-based methods coefficients for analysis of EEG signals, Expert Syst. Appl. 37 (2010)233–239.10.1016/j.eswa.2009.05.012Search in Google Scholar

26. Z. Iscan, Z. Dokur, T. Demiralap, Classification of electroencephalogram signals with combined time and frequency features, Expert Syst. Appl. 38 (2011) 10499–10505.10.1016/j.eswa.2011.02.110Open DOISearch in Google Scholar

27. S. Mallat, A theory for multi-resolution signal decomposition: the wavelet representation, IEEE Trans. Pattern Anal. Mach. Intell. 11 (7) (1989) 674–693.10.1109/34.192463Open DOISearch in Google Scholar

28. C.A. Burges, Tutorial on Support Vector Machine for Pattern Recognition. Data Mining and Knowledge Discovery, Kluwer Academic Publishers, Bostan (1998) 121–167.10.1023/A:1009715923555Search in Google Scholar

29. V. Vapnik, The Nature of Statistical Learning Theory, Springer, New York, 1995.10.1007/978-1-4757-2440-0Search in Google Scholar

30. A Temko, E. Thomas, W. Marnane, G. Lightbody, G. Boylan, EEG-based neonatal seizure detection with support vector machines, Clin. Neurophysiol. 122 (2011) 464–473.10.1016/j.clinph.2010.06.034303679720713314Search in Google Scholar

31. T. Gandhi, B.K. Panigrahi, S. Anand, A comparative study of wavelet families for EEG signals classification, Neurocomputing 74 (2011) 3051–3057.10.1016/j.neucom.2011.04.029Open DOISearch in Google Scholar

32. J. Virmani, V. Kumar, N. Kalra., N. Khandelwal, SVMbased characterization of liver ultrasound images using wavelet packet texture descriptors, J. Digital Imaging 26 (3) (2013) 530–543.10.1007/s10278-012-9537-8364904323065124Search in Google Scholar

33. C. Ambroise C, G.J. McLachlan, Selection bias in gene extraction on the basis of microarray gene expression data, Proc. Natl. Acad. USA 99 (10) (2002) 6562–6566.10.1073/pnas.10210269912444211983868Search in Google Scholar

34. A Subasi, Epileptic seizure detection using dynamic wavelet network, Expert Syst. Appl. 29 (2) (2005) 343–355.10.1016/j.eswa.2005.04.007Open DOISearch in Google Scholar

35. V. Nigam, D. Graupe, A neural-network-based detection of epilepsy, Neurol. Res. 26 (1) (2004) 55–60.10.1179/01616410477302653414977058Search in Google Scholar

36. N. Kannathal, M. Choo, U. Acharya, P. Sadasivan, Entropies for detection of epilepsy in EEG, Comput. Methods Prog. Biomed. 80 (3) (2005) 187–194.10.1016/j.cmpb.2005.06.01216219385Open DOISearch in Google Scholar

37. K. Polat, S. Günes, Classification of epileptic form EEG using a hybrid system based on decision tree classifier and fast Fourier transform, Appl. Math. Comput. 187 (2) (2007) 1017–1026.10.1016/j.amc.2006.09.022Search in Google Scholar

38. A Tzallas, M. Tsipouras, D. Fotiadis, Automatic seizure detection based on time–frequency analysis and artificial neural networks, Comput. Intell. Neurosci. 13 (2007) (Article ID 80510).10.1155/2007/80510224603918301712Search in Google Scholar

39. L. Guo, D. Rivero, J. Seoane, A. Pazos, Classification of EEG signals using relative wavelet energy and artificial neural networks. In: Proceedings of the First ACM/SIGEVO, Summit on Genetic and Evolutionary Computation (GEC’09), Shanghai, China, 12–14 June 2009, pp. 177–184.10.1145/1543834.1543860Search in Google Scholar

40. A Subasi, M.I. Gursoy, EEG signal classification using PCA, ICA, LDA and support vector machine, Expert Syst. Appl. 37 (2010) 8659–8666.10.1016/j.eswa.2010.06.065Search in Google Scholar

41. L. Guo, D. Rivero, J. Dorado, J.R. Rabunal, A. Pazos, Automatic epileptic seizure detection in EEG based on line length feature and artificial neural network, J. Neurosci. Methods 19 (2010) 1101–1109.Search in Google Scholar

42. U. Orhan, M. Hekim, M. Ozer, EEG signals classification using the K means clustering and a multilayer perceptron neural network model, Expert Syst. Appl. 38 (2011) 13475–13481.10.1016/j.eswa.2011.04.149Open DOISearch in Google Scholar

43. L. Guo, D. Rivero, J. Dorado, C. R. Munteanu, A. Pazos, Automatic feature extraction using genetic programming: an application to epileptic EEG classification. Expert Syst. Appl. 38 (2011) 10425–10436.10.1016/j.eswa.2011.02.118Open DOISearch in Google Scholar

44. D. Wang, D. Miao, C. Xie, Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection, Expert Syst. Appl. 38 (2011) 14314–14320.Search in Google Scholar

45. EEG Time Series Data (Department of Epileptology University of Bonn,Germany)<http://epileptologiebonn.de/cms/front_content.php?idcat=193&lang=3&changelang=3.Search in Google Scholar

46. A. Sharmila, P. Geethanjali, Detection of epileptic seizure from EEG based on feature ranking and best feature subset using mutual information estimation. Medical imaging and health informatics. 6 (2016) 1850-1864.Search in Google Scholar

47. A Sharmila, P Geethanjali, DWT based detection of epileptic seizure from EEG signal using naive bayes and KNN classifier. June 30,201610.1109/ACCESS.2016.2585661Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Medicine, Clinical Medicine, other