INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. FIOCCHI C. Intestinal inflammation: a complex interplay of immune and nonimmune cell interactions. The American journal of physiology. 1997; 273(4 Pt 1):G769-75.10.1152/ajpgi.1997.273.4.G769Search in Google Scholar

2. FIOCCHI C. Immunity and inflammation: separate or unified? In: MacDermott RP, editor. Clinical Immunology in Gastroenterology and Hepatology: from Bench to Bedside. New Orleans: American Gastroenterological Association; 1994; 182-8.Search in Google Scholar

3. BRANDTZAEG P, HALSTENSEN TS, KETT K, KRAJCI P, KVALE D, ROGNUM TO, et al. Immunobiology and immunopathology of human gut mucosa: humoral immunity and intraepithelial lymphocytes. Gastroenterology. 1989; 97(6):1562-84.10.1016/0016-5085(89)90406-XSearch in Google Scholar

4. GRISHAM MB, YAMADA T. Neutrophils, nitrogen oxides, and inflammatory bowel disease. Annals of the New York Academy of Sciences. 1992; 664:103-15.10.1111/j.1749-6632.1992.tb39753.x1456643Search in Google Scholar

5. FIOCCHI CB, DG. KATZ, JA. Cytokine production in the human gastrointestinal tract during inflammation. Current Opinion in Gastroenterology. 1994; 10(6):639-44.10.1097/00001574-199411000-00012Search in Google Scholar

6. RAGHOW R. The role of extracellular matrix in postinflammatory wound healing and fibrosis. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 1994; 8(11):823-31.10.1096/fasebj.8.11.80706318070631Search in Google Scholar

7. SHIMIZU Y, SHAW S. Lymphocyte interactions with extracellular matrix. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 1991; 5(9):2292-9.10.1096/fasebj.5.9.18606211860621Search in Google Scholar

8. LEON F, SMYTHIES LE, SMITH PD, KELSALL BL. Involvement of dendritic cells in the pathogenesis of inflammatory bowel disease. Advances in experimental medicine and biology. 2006; 579:117-32.10.1007/0-387-33778-4_816620015Search in Google Scholar

9. SANCHEZ-MUNOZ F, DOMINGUEZ-LOPEZ A, YAMAMOTO-FURUSHO JK. Role of cytokines in inflammatory bowel disease. World journal of gastroenterology : WJG. 2008; 14(27):4280-8.10.3748/wjg.14.4280273117718666314Search in Google Scholar

10. XAVIER RJ, PODOLSKY DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007; 448(7152):427-34.10.1038/nature0600517653185Search in Google Scholar

11. INCE MN, ELLIOTT DE. Immunologic and molecular mechanisms in inflammatory bowel disease. The Surgical clinics of North America. 2007; 87(3):681-96.10.1016/j.suc.2007.03.00517560420Search in Google Scholar

12. BREESE E, BRAEGGER CP, CORRIGAN CJ, WALKER-SMITH JA, MACDONALD TT. Interleukin-2- and interferon-gamma-secreting T cells in normal and diseased human intestinal mucosa. Immunology. 1993; 78(1):127-31.Search in Google Scholar

13. FUSS IJ, NEURATH M, BOIRIVANT M, KLEIN JS, DE LA MOTTE C, STRONG SA, et al. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn's disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. Journal of immunology. 1996; 157(3):1261-70.10.4049/jimmunol.157.3.1261Search in Google Scholar

14. STROBER W, FUSS IJ. Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases. Gastroenterology. 2011; 140(6):1756-67.10.1053/j.gastro.2011.02.016Search in Google Scholar

15. BAUMANN H, GAULDIE J. The acute phase response. Immunology today. 1994; 15(2):74-80.10.1016/0167-5699(94)90137-6Search in Google Scholar

16. BEGUE B, WAJANT H, BAMBOU JC, DUBUQUOY L, SIEGMUND D, BEAULIEU JF, et al. Implication of TNF-related apoptosis-inducing ligand in inflammatory intestinal epithelial lesions. Gastroenterology. 2006;130(7):1962-74.10.1053/j.gastro.2006.03.02216762619Search in Google Scholar

17. STUCCHI A, REED K, O'BRIEN M, CERDA S, ANDREWS C, GOWER A, et al. A new transcription factor that regulates TNF-alpha gene expression, LITAF, is increased in intestinal tissues from patients with CD and UC. Inflammatory bowel diseases. 2006; 12(7):581-7.10.1097/01.MIB.0000225338.14356.d516804395Search in Google Scholar

18. REIMUND JM, WITTERSHEIM C, DUMONT S, MULLER CD, BAUMANN R, POINDRON P, et al. Mucosal inflammatory cytokine production by intestinal biopsies in patients with ulcerative colitis and Crohn's disease. Journal of clinical immunology. 1996; 16(3):144-50.10.1007/BF015409128734357Search in Google Scholar

19. YAMAMOTO-FURUSHO JK. Innovative therapeutics for inflammatory bowel disease. World journal of gastroenterology: WJG. 2007; 13(13):1893-6.10.3748/wjg.v13.i13.1893414696317461487Search in Google Scholar

20. SPOETTL T, HAUSMANN M, KLEBL F, DIRMEIER A, KLUMP B, HOFFMANN J, et al. Serum soluble TNF receptor I and II levels correlate with disease activity in IBD patients. Inflammatory bowel diseases. 2007; 13(6):727-32.10.1002/ibd.2010717260368Search in Google Scholar

21. MIZOGUCHI E, HACHIYA Y, KAWADA M, NAGATANI K, OGAWA A, SUGIMOTO K, et al. TNF receptor type I-dependent activation of innate responses to reduce intestinal damage-associated mortality. Gastroenterology. 2008; 134(2):470-80.10.1053/j.gastro.2007.11.05518242213Search in Google Scholar

22. BAMIAS G, MARTIN C, 3RD, MARINI M, HOANG S, MISHINA M, ROSS WG, et al. Expression, localization, and functional activity of TL1A, a novel Th1-polarizing cytokine in inflammatory bowel disease. Journal of immunology. 2003; 171(9):4868-74.10.4049/jimmunol.171.9.486814568967Search in Google Scholar

23. PREHN JL, MEHDIZADEH S, LANDERS CJ, LUO X, CHA SC, WEI P, et al. Potential role for TL1A, the new TNF-family member and potent costimulator of IFN-gamma, in mucosal inflammation. Clinical immunology. 2004;112(1):66-77.10.1016/j.clim.2004.02.00715207783Search in Google Scholar

24. KAMADA N, HISAMATSU T, HONDA H, KOBAYASHI T, CHINEN H, TAKAYAMA T, et al. TL1A produced by lamina propria macrophages induces Th1 and Th17 immune responses in cooperation with IL-23 in patients with Crohn's disease. Inflammatory bowel diseases. 2010; 16(4):568-75.10.1002/ibd.21124Search in Google Scholar

25. PREHN JL, THOMAS LS, LANDERS CJ, YU QT, MICHELSEN KS, TARGAN SR. The T cell costimulator TL1A is induced by FcgammaR signaling in human monocytes and dendritic cells. Journal of immunology. 2007; 178(7):4033-8.10.4049/jimmunol.178.7.4033Search in Google Scholar

26. MICHELSEN KS, THOMAS LS, TAYLOR KD, YU QT, MEI L, LANDERS CJ, et al. IBD-associated TL1A gene (TNFSF15) haplotypes determine increased expression of TL1A protein. PloS one. 2009; 4(3):e4719.10.1371/journal.pone.0004719Search in Google Scholar

27. DINARELLO CA. The IL-1 family and inflammatory diseases. Clinical and experimental rheumatology. 2002; 20 (5 Suppl 27): S1-13.Search in Google Scholar

28. ASHWOOD P, HARVEY R, VERJEE T, WOLSTENCROFT R, THOMPSON RP, POWELL JJ. Functional interactions between mucosal IL-1, IL-ra and TGF-beta 1 in ulcerative colitis. Inflammation research : official journal of the European Histamine Research Society [et a.l]. 2004; 53(2):53-9.Search in Google Scholar

29. MITSUYAMA K, TOYONAGA A, SASAKI E, ISHIDA O, IKEDA H, TSURUTA O, et al. Soluble interleukin-6 receptors in inflammatory bowel disease: relation to circulating interleukin-6. Gut. 1995; 36(1):45-9.10.1136/gut.36.1.45Search in Google Scholar

30. REINISCH W, GASCHE C, TILLINGER W, WYATT J, LICHTENBERGER C, WILLHEIM M, et al. Clinical relevance of serum interleukin-6 in Crohn's disease: single point measurements, therapy monitoring, and prediction of clinical relapse. The American journal of gastroenterology. 1999; 94(8):2156-64.10.1111/j.1572-0241.1999.01288.xSearch in Google Scholar

31. SUZUKI A, HANADA T, MITSUYAMA K, YOSHIDA T, KAMIZONO S, HOSHINO T, et al. CIS3/SOCS3/SSI3 plays a negative regulatory role in STAT3 activation and intestinal inflammation. The Journal of experimental medicine. 2001; 193(4):471-81.10.1084/jem.193.4.471Search in Google Scholar

32. VAN KEMSEKE C, BELAICHE J, LOUIS E. Frequently relapsing Crohn's disease is characterized by persistent elevation in interleukin-6 and soluble interleukin-2 receptor serum levels during remission. International journal of colorectal disease. 2000; 15(4):206-10.10.1007/s003840000226Search in Google Scholar

33. ATREYA R, MUDTER J, FINOTTO S, MULLBERG J, JOSTOCK T, WIRTZ S, et al. Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in Crohn disease and experimental colitis in vivo. Nature medicine. 2000; 6(5):583-8.10.1038/75068Search in Google Scholar

34. MUDTER J, NEURATH MF. Apoptosis of T cells and the control of inflammatory bowel disease: therapeutic implications. Gut. 2007; 56(2):293-303.10.1136/gut.2005.090464Search in Google Scholar

35. KALLEN KJ. The role of transsignalling via the agonistic soluble IL-6 receptor in human diseases. Biochimica et biophysica acta. 2002; 1592(3):323-43.10.1016/S0167-4889(02)00325-7Search in Google Scholar

36. YAMAMOTO M, YOSHIZAKI K, KISHIMOTO T, ITO H. IL-6 is required for the development of Th1 cell-mediated murine colitis. Journal of immunology. 2000; 164(9):4878-82.10.4049/jimmunol.164.9.4878Search in Google Scholar

37. CAREY R, JURICKOVA I, BALLARD E, BONKOWSKI E, HAN X, XU H, et al. Activation of an IL-6:STAT3-dependent transcriptome in pediatric-onset inflammatory bowel disease. Inflammatory bowel diseases. 2008; 14(4):446-57.10.1002/ibd.20342Search in Google Scholar

38. LEBEL-BINAY S, BERGER A, ZINZINDOHOUE F, CUGNENC P, THIOUNN N, FRIDMAN WH, et al. Interleukin-18: biological properties and clinical implications. European cytokine network. 2000; 11(1):15-26.Search in Google Scholar

39. LEACH ST, MESSINA I, LEMBERG DA, NOVICK D, RUBENSTEIN M, DAY AS. Local and systemic interleukin-18 and interleukin-18-binding protein in children with inflammatory bowel disease. Inflammatory bowel diseases. 2008; 14(1):68-74.10.1002/ibd.20272Search in Google Scholar

40. PIZARRO TT, MICHIE MH, BENTZ M, WORARATANADHARM J, SMITH MF, JR., FOLEY E, et al. IL-18, a novel immunoregulatory cytokine, is up-regulated in Crohn's disease: expression and localization in intestinal mucosal cells. Journal of immunology. 1999; 162(11):6829-35.10.4049/jimmunol.162.11.6829Search in Google Scholar

41. OKAMURA H, KASHIWAMURA S, TSUTSUI H, YOSHIMOTO T, NAKANISHI K. Regulation of interferon-gamma production by IL-12 and IL-18. Current opinion in immunology. 1998; 10(3):259-64.10.1016/S0952-7915(98)80163-5Search in Google Scholar

42. MICALLEF MJ, TANIMOTO T, KOHNO K, IKEGAMI H, KURIMOTO M. Interleukin 18 induces a synergistic enhancement of interferon gamma production in mixed murine spleen cell-tumor cell cultures: role of endogenous interleukin 12. Cancer detection and prevention. 2000; 24(3):234-43.Search in Google Scholar

43. MANGAN PR, HARRINGTON LE, O'QUINN DB, HELMS WS, BULLARD DC, ELSON CO, et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature. 2006; 441(7090):231-4.10.1038/nature0475416648837Search in Google Scholar

44. PARADOWSKA A, MASLINISKI W, GRZYBOWSKA-KOWALCZYK A, LACKI J. The function of interleukin 17 in the pathogenesis of rheumatoid arthritis. Archivum immunologiae et therapiae experimentalis. 2007; 55(5):329-34.10.1007/s00005-007-0032-818219763Search in Google Scholar

45. RUDDY MJ, WONG GC, LIU XK, YAMAMOTO H, KASAYAMA S, KIRKWOOD KL, et al. Functional cooperation between interleukin-17 and tumor necrosis factor-alpha is mediated by CCAAT/enhancer-binding protein family members. The Journal of biological chemistry. 2004; 279(4):2559-67.10.1074/jbc.M30880920014600152Search in Google Scholar

46. PARK H, LI Z, YANG XO, CHANG SH, NURIEVA R, WANG YH, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nature immunology. 2005; 6(11):1133-41.10.1038/ni1261161887116200068Search in Google Scholar

47. LANGRISH CL, CHEN Y, BLUMENSCHEIN WM, MATTSON J, BASHAM B, SEDGWICK JD, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. The Journal of experimental medicine. 2005; 201(2):233-40.10.1084/jem.20041257221279815657292Search in Google Scholar

48. HONZAWA Y, NAKASE H, SHIOKAWA M, YOSHINO T, IMAEDA H, MATSUURA M, et al. Involvement of interleukin-17A-induced expression of heat shock protein 47 in intestinal fibrosis in Crohn's disease. Gut. 2014;63(12):1902-12.10.1136/gutjnl-2013-30563224534724Search in Google Scholar

49. KERAMI Z, DUIJVIS NW, VOGELS EW, VAN DOOREN FH, MOERLAND PD, TE VELDE AA. Effect of interleukin-17 on gene expression profile of fibroblasts from Crohn's disease patients. Journal of Crohn's & colitis. 2014; 8(10):1208-16.10.1016/j.crohns.2014.02.009Search in Google Scholar

50. JIANG W, SU J, ZHANG X, CHENG X, ZHOU J, SHI R, et al. Elevated levels of Th17 cells and Th17-related cytokines are associated with disease activity in patients with inflammatory bowel disease. Inflammation research : official journal of the European Histamine Research Society [et al]. 2014; 63(11):943-50.10.1007/s00011-014-0768-7Search in Google Scholar

51. FUJINO S, ANDOH A, BAMBA S, OGAWA A, HATA K, ARAKI Y, et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut. 2003; 52(1):65-70.10.1136/gut.52.1.65Search in Google Scholar

52. TRINCHIERI G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nature reviews Immunology. 2003; 3(2):133-46.10.1038/nri1001Search in Google Scholar

53. IIJIMA H, TAKAHASHI I, KISHI D, KIM JK, KAWANO S, HORI M, et al. Alteration of interleukin 4 production results in the inhibition of T helper type 2 cell-dominated inflammatory bowel disease in T cell receptor alpha chain-deficient mice. The Journal of experimental medicine. 1999; 190(5):607-15.10.1084/jem.190.5.607Search in Google Scholar

54. GRIGA T, HEBLER U, VOIGT E, TROMM A, MAY B. Interleukin-4 inhibits the increased production of vascular endothelial growth factor by peripheral blood mononuclear cells in patients with inflammatory bowel disease. Hepato-gastroenterology. 2000; 47(36):1604-7.Search in Google Scholar

55. KUHN R, LOHLER J, RENNICK D, RAJEWSKY K, MULLER W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 1993; 75(2):263-74.10.1016/0092-8674(93)80068-PSearch in Google Scholar

56. RENNICK DM, FORT MM. Lessons from genetically engineered animal models. XII. IL-10-deficient (IL-10(-/-) mice and intestinal inflammation. American journal of physiology Gastrointestinal and liver physiology. 2000; 278(6):G829-33.10.1152/ajpgi.2000.278.6.G82910859210Search in Google Scholar

57. MIZOGUCHI A, BHAN AK. A case for regulatory B cells. Journal of immunology. 2006; 176(2):705-10.10.4049/jimmunol.176.2.70516393950Search in Google Scholar

58. SATTLER S, LING GS, XU D, HUSSAARTS L, ROMAINE A, ZHAO H, et al. IL-10-producing regulatory B cells induced by IL-33 (Breg(IL-33)) effectively attenuate mucosal inflammatory responses in the gut. Journal of autoimmunity. 2014; 50:107-22.10.1016/j.jaut.2014.01.032401214224491821Search in Google Scholar

59. MAREK A, BRODZICKI J, LIBEREK A, KORZON M. TGF-beta (transforming growth factor-beta) in chronic inflammatory conditions - a new diagnostic and prognostic marker? Medical science monitor : international medical journal of experimental and clinical research. 2002; 8(7):RA145-51.Search in Google Scholar

60. KANAZAWA S, TSUNODA T, ONUMA E, MAJIMA T, KAGIYAMA M, KIKUCHI K. VEGF, basic-FGF, and TGF-beta in Crohn's disease and ulcerative colitis: a novel mechanism of chronic intestinal inflammation. The American journal of gastroenterology. 2001; 96(3):822-8.10.1111/j.1572-0241.2001.03527.x11280558Search in Google Scholar

61. LAWRANCE IC, MAXWELL L, DOE W. Inflammation location, but not type, determines the increase in TGF-beta1 and IGF-1 expression and collagen deposition in IBD intestine. Inflammatory bowel diseases. 2001; 7(1):16-26.10.1097/00054725-200102000-0000311233656Search in Google Scholar

62. FINA D, CARUSO R, PALLONE F, MONTELEONE G. Interleukin-21 (IL-21) controls inflammatory pathways in the gut. Endocrine, metabolic & immune disorders drug targets. 2007; 7(4):288-91.10.2174/18715300778279430818220949Search in Google Scholar

63. FANTINI MC, MONTELEONE G, MACDONALD TT. New players in the cytokine orchestra of inflammatory bowel disease. Inflammatory bowel diseases. 2007; 13(11):1419-23.10.1002/ibd.2021217712836Search in Google Scholar

64. DE RHAM C, FERRARI-LACRAZ S, JENDLY S, SCHNEITER G, DAYER JM, VILLARD J. The proinflammatory cytokines IL-2, IL-15 and IL-21 modulate the repertoire of mature human natural killer cell receptors. Arthritis research & therapy. 2007; 9(6):R125.10.1186/ar2336224624618053164Search in Google Scholar

65. CHEN Z, LAURENCE A, O'SHEA JJ. Signal transduction pathways and transcriptional regulation in the control of Th17 differentiation. Seminars in immunology. 2007; 19(6):400-8.10.1016/j.smim.2007.10.015232367818166487Search in Google Scholar

66. MONTELEONE G, MONTELEONE I, FINA D, VAVASSORI P, DEL VECCHIO BLANCO G, CARUSO R, ET AL. Interleukin-21 enhances T-helper cell type I signaling and interferon-gamma production in Crohn's disease. Gastroenterology. 2005; 128(3):687-94.10.1053/j.gastro.2004.12.04215765404Search in Google Scholar

67. YESTE A, MASCANFRONI ID, NADEAU M, BURNS EJ, TUKPAH AM, SANTIAGO A, et al. IL-21 induces IL-22 production in CD4+ T cells. Nature communications. 2014; 5:3753.10.1038/ncomms4753415760524796415Search in Google Scholar

68. ANDOH A, ZHANG Z, INATOMI O, FUJINO S, DEGUCHI Y, ARAKI Y, et al. Interleukin-22, a member of the IL-10 subfamily, induces inflammatory responses in colonic subepithelial myofibroblasts. Gastroenterology. 2005; 129(3):969-84.10.1053/j.gastro.2005.06.07116143135Search in Google Scholar

69. SCHMECHEL S, KONRAD A, DIEGELMANN J, GLAS J, WETZKE M, PASCHOS E, et al. Linking genetic susceptibility to Crohn's disease with Th17 cell function: IL-22 serum levels are increased in Crohn's disease and correlate with disease activity and IL23R genotype status. Inflammatory bowel diseases. 2008; 14(2):204-12.10.1002/ibd.2031518022867Search in Google Scholar

70. SUGIMOTO K, OGAWA A, MIZOGUCHI E, SHIMOMURA Y, ANDOH A, BHAN AK, et al. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. The Journal of clinical investigation. 2008; 118(2):534-44.10.1172/JCI33194215756718172556Search in Google Scholar

71. LI LJ, GONG C, ZHAO MH, FENG BS. Role of interleukin-22 in inflammatory bowel disease. World journal of gastroenterology : WJG. 2014; 20(48):18177-88.10.3748/wjg.v20.i48.18177427795525561785Search in Google Scholar

72. ZINDL CL, LAI JF, LEE YK, MAYNARD CL, HARBOUR SN, OUYANG W, et al. IL-22-producing neutrophils contribute to antimicrobial defense and restitution of colonic epithelial integrity during colitis. Proceedings of the National Academy of Sciences of the United States of America. 2013; 110(31):12768-73.10.1073/pnas.1300318110373293523781104Search in Google Scholar

73. FLOSS DM, MROTZEK S, KLOCKER T, SCHRODER J, GROTZINGER J, ROSE-JOHN S, et al. Identification of canonical tyrosine-dependent and non-canonical tyrosine-independent STAT3 activation sites in the intracellular domain of the interleukin 23 receptor. The Journal of biological chemistry. 2013; 288(27):19386-400.10.1074/jbc.M112.432153370764323673666Search in Google Scholar

74. KRYCZEK I, LIN Y, NAGARSHETH N, PENG D, ZHAO L, ZHAO E, et al. IL-22(+)CD4(+) T cells promote colorectal cancer stemness via STAT3 transcription factor activation and induction of the methyltransferase DOT1L. Immunity. 2014; 40(5):772-84.10.1016/j.immuni.2014.03.010403236624816405Search in Google Scholar

eISSN:
1220-4749
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Medicine, Clinical Medicine, Internal Medicine, other, Cardiology, Gastroenterology, Rheumatology