Accesso libero

The structure and properties of eucalyptus fiber/phenolic foam composites under N-β(aminoethyl)-γ-aminopropyl trimethoxy silane pretreatments

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Ma, Y., Wang, J., Xu, Y., Wang, C. & Chu, F. (2015). Effect of zinc oxide on properties of phenolic foams/halogen-free flame retardant system. J. Appl. Polym. Sci. 132(44). DOI: 10.1002/app.42730.10.1002/app.42730Open DOISearch in Google Scholar

2. Lei, S., Guo, Q., Zhang, D., Shi, J., Liu, L. & Wei, X. (2010). Preparation and properties of the phenolic foams with controllable nanometer pore structure. Journal of applied polymer science. 117(6):3545–3550. DOI: 10.1002/app.32280.10.1002/app.32280Open DOISearch in Google Scholar

3. Yang, H., Wang, X., Yuan, H., Song, L., Hu, Y. & Yuen, R.K.. (2012). Fire performance and mechanical properties of phenolic foams modified by phosphorus-containing polyethers. Journal of Polymer Research. 19(3):1–10. DOI: 10.1007/s10965-012-9831-7.10.1007/s10965-012-9831-7Open DOISearch in Google Scholar

4. Rangari, V.K., Hassan, T.A., Zhou, Y., Mahfuz, H., Jeelani, S. & Prorok, B.C.. (2007). Cloisite clay-infused phenolic foam nanocomposites. Journal of applied polymer science. 103(1):308–314. DOI: 10.1002/app.25287.10.1002/app.25287Open DOISearch in Google Scholar

5. Shen, H., Lavoie, A.J. & Nutt, S.R. (2003). Enhanced peel resistance of fiber reinforced phenolic foams. Composites Part A: Appl. Sci. Manufact. 34(10), 941–948. DOI: 10.1016/S1359-835X(03)00210-0.10.1016/S1359-835X(03)00210-0Search in Google Scholar

6. Shen, H. & Nutt, S. (2003). Mechanical characterization of short fiber reinforced phenolic foam. Composites Part A: Applied science and manufacturing. 34(9), 899–906. DOI:10.1016/S1359-835X(03)00136-2.10.1016/S1359-835X(03)00136-2Open DOISearch in Google Scholar

7. Bledzki, A. & Gassan, J. (1999). Composites reinforced with cellulose based fibres. Prog. Polym. Sci. 24(2), 221–274. DOI: 10.1016/S0079-6700(98)00018-5.10.1016/S0079-6700(98)00018-5Open DOISearch in Google Scholar

8. Canche-E scamilla, G., Cauich-Cupul, J., Mendizabal, E., Puig, J., Vazquez-Torres, H. & Herrera-Franco, P. (1999). Mechanical properties of acrylate-grafted henequen cellulose fibers and their application in composites. Composites Part A: Appl. Sci. Manufact. 30(3), 349–359. DOI: 10.1016/S1359-835X(98)00116-X.10.1016/S1359-835X(98)00116-XSearch in Google Scholar

9. Mitra, B., Basak, R. & Sarkar, M. (1998). Studies on jute-reinforced composites, its limitations, and some solutions through chemical modifications of fibers. J. Appl. Polym. Sci. 67(6), 1093–1100. DOI: 10.1002/(SICI)1097-4628(19980207)67:6<1093::AID-APP17>3.0.CO;2-1.10.1002/(SICI)1097-4628(19980207)67:6<1093::AID-APP17>3.0.CO;2-1Open DOISearch in Google Scholar

10. Rana, A., Mandal, A., Mitra, B., Jacobson, R., Rowell, R. & Banerjee, A. (1998). Short jute fiber-reinforced polypropylene composites: effect of compatibilizer. J. Appl. Polym. Sci. 69(2), 329–338. DOI: 10.1002/(SICI)1097-4628(19980711)69:2<329::AID-APP14>3.0.CO;2-R.10.1002/(SICI)1097-4628(19980711)69:2<329::AID-APP14>3.0.CO;2-RSearch in Google Scholar

11. Xie, Y., Hill, C.A., Xiao, Z., Militz, H. & Mai, C. (2010). Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Appl. Sci. Manufact. 41(7), 806–819. DOI: 10.1016/j.compositesa.2010.03.005.10.1016/j.compositesa.2010.03.005Open DOISearch in Google Scholar

12. Yang, Y. & He, J. (2015). Mechanical characterization of phenolic foams modified by short glass fibers and polyurethane prepolymer. Polymer Composites 36(9), 1584–1589. DOI: 10.1002/pc.23066.10.1002/pc.23066Open DOISearch in Google Scholar

13. Maldas, D. & Kokta, B. (1993). Performance of hybrid reinforcements in PVC composites. I: Use of surface-modified mica and wood pulp as reinforcements. J. Test. Evaluat. 21(1), 68–72. DOI: 10.1177/073168449201101002.10.1177/073168449201101002Open DOISearch in Google Scholar

14. Mohanty, A. & Misra, M. & Drzal, L. (2002). Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J. Polym. Environ. 10(1–2), 19–26. DOI: 10.1023/A:1021013921916.10.1023/A:1021013921916Open DOISearch in Google Scholar

15. Bledzki, A., Gassan, J. & Theis, S. (1998). Wood-filled thermoplastic composites. Mech. Comp. Mat. 34(6):563–568. DOI: 10.1007/BF02254666.10.1007/BF02254666Open DOISearch in Google Scholar

16. Cantero, G., Arbelaiz, A., Llano-Ponte, R. & Mondragon, I. (2003). Effects of fibre treatment on wettability and mechanical behaviour of flax/polypropylene composites. Comp. Sci. Technol. 63(9), 1247–1254. DOI: 10.1016/S0266-3538(03)00094-0.10.1016/S0266-3538(03)00094-0Open DOISearch in Google Scholar

17. Bachtiar, D., Sapuan, S. & Hamdan, M. (2008). The effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites. Materials & Design. 29(7), 1285–1290. DOI: 10.1016/j.matdes.2007.09.006.10.1016/j.matdes.2007.09.006Open DOISearch in Google Scholar

18. Bledzki, A., Reihmane, S. & Gassan, J. (1996). Properties and modification methods for vegetable fibers for natural fiber composites. J. Appl. Polym. Sci. 59(8), 1329-1336. DOI:10.1002/(SICI)1097-4628(19960222)59:8<1329::AIDAPP17>3.0.CO;2-0.Search in Google Scholar

19. Islam, M. & Pickering, K. (2007). Influence of alkali treatment on the interfacial bond strength of industrial hemp fibre reinforced epoxy composites: Effect of variation from the ideal stoicheometric ratio of epoxy resin to curing agent. Adv. Mater. Res. 29, 319–322. DOI:10.4028/www.scientific.net/AMR.29-30.319.10.4028/www.scientific.net/AMR.29-30.319Open DOISearch in Google Scholar

20. Rider, A. & Arnott, D. (2000). Boiling water and silane pre-treatment of aluminium alloys for durable adhesive bonding. Intern. J. Adhes. Adhesiv. 20(3), 209–220. DOI: 10.1016/S0143-7496(99)00046-9.10.1016/S0143-7496(99)00046-9Open DOISearch in Google Scholar

21. Mittal, K.L. (2007). Silanes and other coupling agents. CRC Press.Search in Google Scholar

22. Colom, X., Carrasco, F., Pages, P. & Canavate, J. (2003). Effects of different treatments on the interface of HDPE/lignocellulosic fiber composites. Composites Sci. Technol. 63(2), 161–169. DOI: 10.1016/S0266-3538(02)00248-8.10.1016/S0266-3538(02)00248-8Open DOISearch in Google Scholar

23. Pickering, K., Abdalla, A., Ji, C., McDonald, A. & Franich, R. (2003). The effect of silane coupling agents on radiata pine fibre for use in thermoplastic matrix composites. Composites Part A: Appl. Sci. Manufact. 34(10), 915–926. DOI: 10.1016/S1359-835X(03)00234-3.10.1016/S1359-835X(03)00234-3Search in Google Scholar

24. Te-fu, Q., Luo-hua, H. & Gai-yun, L. (2005). Effect of chemical modification on the properties of wood/polypropylene composites. J. For. Res. 16(3), 241–244. DOI: 10.1007/BF02856824.10.1007/BF02856824Open DOISearch in Google Scholar

25. Towo, A.N. & Ansell, M.P. (2008). Fatigue evaluation and dynamic mechanical thermal analysis of sisal fibre–thermosetting resin composites. Composites Sci. Technol. 68(3), 925–932. DOI:10.1016/j.compscitech.2007.08.022.10.1016/j.compscitech.2007.08.022Open DOISearch in Google Scholar

26. Silverstein, R.M., Webster, F.X., Kiemle, D.J. & Bryce, D.L. (2014). Spectrometric identification of organic compounds. John Wiley & Sons.Search in Google Scholar

27. Lu, B., Zhang, L. & Zeng, J.E. et al. (2005). Natural Fiber Composites Material Chemical Industry Press.Search in Google Scholar

28. Valadez-Gonzalez, A., Cervantes-Uc, J., Olayo, R. & Herrera-Franco, P. (1999). Chemical modification of henequen fibers with an organosilane coupling agent. Composites Part B: Engineering, 30(3), 321–331. DOI: 10.1016/S1359-8368(98)00055-9.10.1016/S1359-8368(98)00055-9Open DOISearch in Google Scholar

29. Cui, Y., Lee, S., Noruziaan, B., Cheung, M. & Tao, J. (2008). Fabrication and interfacial modification of wood/recycled plastic composite materials. Composites Part A: Appl. Sci. Manufact. 39(4), 655–661. DOI: 10.1016/j.compositesa.2007.10.017.10.1016/j.compositesa.2007.10.017Open DOISearch in Google Scholar

30. Wang, L., Han, G. & Zhang, Y. (2007). Comparative study of composition, structure and properties of Apocynum venetum fibers under different pretreatments. Carbohydr. Polym. 69(2), 391–397. DOI: 10.1016/j.carbpol.2006.12.028.10.1016/j.carbpol.2006.12.028Open DOISearch in Google Scholar

31. Cuicui, W. & Dai Zhen, X.G. (2010). Research on Hard-segment Flame-retardant Modification of Waterborne Polyurethane. China Coatings. 8:016. DOI: 10.13531/j.cnki.china.coatings.2010.08.010.10.13531/j.cnki.china.coatings.2010.08.010Open DOISearch in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering