Accesso libero

Degradability of polylactide films by commercial microbiological preparations for household composters

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. http://docs.europeanbioplastics.org/2016/publications/EUBP_Facts_and_Figures_2017.pdfSearch in Google Scholar

2. http://www.biotworzywa.com.pl/pl/produkcja-biotworzyw-rosnie-mimo-niskiej-ceny-ropy-naftowej/Search in Google Scholar

3. Young-Jung, W., Jin-Nam Kim, K. & Hwa-Won, R. (2006). Biotechnological Production of Lactic Acid and Its Recent Applications. Food Technol. Biotechnol. 44(2), 163–172. Retrieved August 20, 2016, from Food Technology and Biotechnology database on the World Wide Web: http://www.ftb.com.hrSearch in Google Scholar

4. Dove, A.P. & Becker, J. (2011). Poly(lactide)s as Robust Renewable Materials. W Mathers R.T. & Meier, M.A. (ed.), Green Polymerization Methods, 201–220. Wiley-VCH. DOI: 10.1002/9783527636167.ch9.10.1002/9783527636167.ch9Open DOISearch in Google Scholar

5. Szumigaj, J., Żakowska, Z., Klimek, L., Rosicka-Kaczmarek, A. & Bartkowiak, A. (2008). Assessment of Polylactide Foil Degradation as a Result of Filamentous Fungi Activity. Polish J. Environ. Stud. 17(3), 335–341.Search in Google Scholar

6. Krueger, M., Harms, H. & Schlosser, D. (2015). Prospects for microbiological solutions to environmental pollution with plastics. Appl. Microbiol. Biotechnol. Nov. 99(21); 8857–8874, DOI: 10.1007/s00253-015-6879-4.10.1007/s00253-015-6879-4Open DOISearch in Google Scholar

7. Walczak, M., Świontek-Brzezińska, M., Sionkowska, A., Michalska, M. & Jankiewicz, U. (2015). Biofilm formation on the surface of polylactide during its biodegradation in different environments. Coll. Surf. B, 136, 340–345. DOI:10.1016/j.colsurfb.2015.09.036.10.1016/j.colsurfb.2015.09.036Open DOISearch in Google Scholar

8. Torres, A., Li, S., Roussos, S. & Vert, M. (1996). Degradation of l- and D,l-lactic acid oligomers in the presence of Fusarium moniliforme and Pseudomonas putida. J. Environ. Polym. Degrad. 4, 213–216. DOI: 10.1007/BF02070690.10.1007/BF02070690Search in Google Scholar

9. Sikorska, W., Musioł, M., Nowak, B., Pająk, J. & Łabużek, S. (2015). Degradability of polylactide and its blend with poly(R,S)-3-hydroxybutyrate in industrial composting and compost extract. Int. Biodet. Biodegr. 101, 32–41. DOI:10.1016/j.ibiod.2015.03.021.10.1016/j.ibiod.2015.03.021Open DOISearch in Google Scholar

10. Kolstad, J., Vink, E., De Vild, B. & Debeer, L. (2012). Assessment of anaerobic degradation of Ingeo polylactides under accelerated landfill conditions. Polym. Degrad. Stabil. 97, 1131–1141. DOI:10.1016/j.polymdegradstab.2012.04.003.10.1016/j.polymdegradstab.2012.04.003Search in Google Scholar

11. Karlsson, S., Albertsson, A. & Hakkarainen, M. (2000). Rapid (bio)degradation of polylactide by mixed culture of compost microorganisms—low molecular mass products and matrix changes. Polymer 41. DOI: 10.1016/S0032-3861(99)00393-6.10.1016/S0032-3861(99)00393-6Open DOISearch in Google Scholar

12. Kalea, G., Aurasa, R., Singha, S. & Narayan, R. (2007). Biodegradability of polylactide bottles in real and simulated composting conditions. Polym. Test. 26, 1049–1061. DOI: 10.1016/j.polymertesting.2007.07.006.10.1016/j.polymertesting.2007.07.006Open DOISearch in Google Scholar

13. Zydlik, Z. & Zydlik, P. (2013). The effect of microbiological products on soil properties in the conditions of replant disease. Zemiderbiste 100(1), 19–24. DOI: 10.13080/z-a.2013.100.003.10.13080/z-a.2013.100.003Open DOISearch in Google Scholar

14. Sikorska, W. (2000). The influence of morphology on properties and biodegradation of copolymers and polymer blends containing atactic poly(3-hydroxybutyrate) (in Polish). Unpublished PhD doctoral dissertation. Zabrze, Poland.Search in Google Scholar

15. Li, S., Girard, A., Garreau, H. & Vert, M. (2001). Enzymatic degradation of polylactide stereocopolymers with predominant d-lactyl contents. Polym. Degrad. Stabil. 71, 61–67. DOI: 10.1016/S0141-3910(00)00152-X.10.1016/S0141-3910(00)00152-XOpen DOISearch in Google Scholar

16. Li, S. (1999). Hydrolytic Degradation Characteristics of Aliphatic Polyesters Derived from Lactic and Glycolic Acids. J. Biomed. Mater. Res. 48(3), 342–353. DOI:10.1002/(SICI)1097-4636(1999)48:3<342::AID-JBM20>3.0.CO;2-7.10.1002/(SICI)1097-4636(1999)48:3<342::AID-JBM20>3.0.CO;2-7Open DOISearch in Google Scholar

17. Lyu, S. & Untereker, D. (2009). Degradability of Polymers for Implantable Biomedical Devices. Int. J. Mol. Sci. 10(9), 4033–4065. DOI:10.3390/ijms10094033.10.3390/ijms10094033Open DOISearch in Google Scholar

18. Torres, A., Li, S., Roussos, S. & Vert, M. (1996). Screening of Microorganisms for Biodegradation of Poly(Lactic Acid) and Lactic Acid-Containing Polymers. Appl. Environ. Microbiol. 62, 2393–2397.10.1128/aem.62.7.2393-2397.1996Search in Google Scholar

19. Tokiwa, Y., Calabia, B., Ugwu, C. & Aiba, S. (2009). Biodegradability of Plastics. Inter. J. Molec. Sci. 10(9), 3722–3742. DOI:10.3390/ijms10093722.10.3390/ijms10093722Open DOISearch in Google Scholar

20. Musioł, M., Sikorska, W., Adamus, G., Janeczek, H. & Richert, J. (2016). Forensic engineering of advanced polymeric materials. Part III – Biodegradation of thermoformed rigid PLA packaging under industrial composting conditions. Waste Manage 52, 69–76. DOI: 10.1016/j.wasman.2016.04.016.10.1016/j.wasman.2016.04.016Open DOISearch in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering